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Introduction

Motivations

The basic underlying idea of this thesis is to use Higgs bundles as a probe to study the

geometry of smooth projective varieties, defined over an algebraically closed field of cha-

racteristic 0. The starting point of this approach may be found in the work of Simpson

on the non-Abelian Hodge theory [61, 62]. In particular, in this thesis we shall use notions

of positivity for Higgs bundles to improve some results of Yau ([69]), Miyaoka ([52]) and

Simpson ([61]) about smooth complex projective varieties of general type (see Chapter 5).

These notions of positivity also relate to a conjecture about a class of Higgs bundles

satisfying a “strong semistability condition” (the curve semistability, see Definition 4.1.1).

The conjecture was formulated by Bruzzo and Graña Otero in 2006 and is still open,

although some progress has recently been made.

This thesis also contains some contributions in that direction.

Positivity conditions for line bundles

Let us start from reviewing positivity conditions for line bundles.

Let X be a projective scheme over an algebraically closed field K. A line bundle L over X

is very ample (relatively to Spec(K)) if there is a closed embedding i : X → PNK for some

N ∈ N≥1 such that i∗O(1) = L ([30, Second Definition at page 120]; this definition is

slightly different from the original one [27, Définition 4.4.2]). A line bundle L over X is

ample if L⊗m is very ample (relatively to Spec(K)) for some m ∈ N≥1 (cfr. [30, Theorem

II.7.6]).

To be clear, Grothendieck and Hartshorne have defined very ample and ample line bundles

not only over projective schemes. By Cartan, Serre, Grothendieck Theorem, these defini-

tions of ample line bundle (over projective schemes) given by Grothendieck and Hartshorne

are equivalent (see [28, Proposition 2.6.1] and [30, Proposition III.5.3]).

v
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In different papers, Nakai, Moǐsezon and Kleiman have proved that a line bundle L over

X is ample if and only if for any positive-dimensional subvariety V of X the following

inequality ∫
V

c1(L)
dimV > 0

holds ([45, Theorem 1.2.23]).

“Passing to the limit”1, that is considering the line bundles L over X such that for any

positive-dimensional subvariety V of X the following inequality∫
V

c1(L)
dimV ≥ 0

holds one obtains the notion of numerically effective line bundle (nef 2, for short). Kleiman

has proved in [39] that a line bundle L over X is nef if and only if for any irreducible curve

C on X the following inequality ∫
C

c1(L) ≥ 0

holds ([39, Theorem III.2.1]). This last condition is the definition of nef line bundle used

nowadays.

These results justify the generic adjective “positive” associated with the ampleness and

nefness conditions for line bundles.

Positivity conditions and curve semistable vector bundles

Hartshorne has introduced in [29] a notion of ampleness for vector bundles of higher rank.

Let K be an algebraically closed field of characteristic 0 and let X be a projective scheme

over K. A vector bundle E over X is ample if the line bundle OGr1(E)(1) over Gr1(E) (the

projective bundle of rank 1 locally free quotients of E, see [25] or [45]) is ample. Similarly,

a vector bundle E over X is nef if the line bundle OGr1(E)(1) over Gr1(E) is nef ([45,

Definition 6.1.1]). Finally, a vector bundle E over X is numerically flat if E and E∨ are

both nef.

On the other hand, in order to construct the moduli space of vector bundles over a smooth

irreducible projective curve, Mumford has introduced in [53, Definition at page 529] the

1In some sense, this colloquial phrase can be formalized, see [45, Theorem 1.4.23].
2Other possibilities are, in chronological order, arithmetically effective, numerically eventually free and

pseudoample (See [45, Remark 1.4.2]).
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so-called (slope semi)stability condition. Later, Takemoto has extended in [64] this notion

on any smooth irreducible projective variety (Definition 1.2.1).

Positivity conditions and semistability for vector bundles over smooth irreducible projective

varieties are not “disjoint” properties, in the sense that the first ones determine the second

one and vice versa. We start reviewing the simplest case: the semistable vector bundles

over smooth irreducible projective curves.

Let C be a smooth irreducible projective curve and let E be a rank r ≥ 2 vector bundle over

C. [52, Theorems 3.4 and 3.4’] prove that E is semistable if and only if E ⊗ det(E)−1/r is

numerically flat. These proofs follow by another equivalent condition for the semista-

bility of E: E is semistable if and only if the normalized hyperplane class λ1(E) ∈
N1 (Gr1(E)) is nef (cfr. Equation (4.1) and [52, Theorem 3.1]). Bruzzo and Hernández

Ruipérez have generalised in [15] Miyaoka’s criterion introducing other numerical classes

λs(E) ∈ N1 (Gr1 (Qs,E)) and θs(E) ∈ N1 (Gr1(E)) where s ∈ {1, . . . , r−1} (cfr. Equations

(4.1) and (4.2), respectively). They have proved that the semistability of E implies the

nefness of all these numerical classes; and, conversely, if one of these numerical classes is

nef then E is semistable ([15, Theorem 1.1]).

Moreover, they have given a generalisation of this criterion to semistable vector bundles

over smooth complex projective varieties. In this thesis we extend this criterion to smooth

projective varieties defined over an algebraically closed field of characteristic 0 (Theorem

4.2.1). Taking also in account Nakayama’s result proved in [55], let X be a smooth complex

projective variety and let E be a vector bundle over X. The following statements are

equivalent ([55, Theorem 2] and [15, Theorem 1.4]):

a) θ1(E) is nef;

b) E is curve semistable (see Definition 4.1.1);

c) E is semistable with respect to some polarization H and c2 (End(E)) = 0 ∈ H4(X,Q);

d) E is semistable with respect to some polarization H and

∫
X

c2 (End(E)) ·Hn−2 = 0.

The interest in this last result is that curve semistable vector bundles over X are semistable

with respect to all polarizations of X. Furthermore, this suggests a generalisation to the

Higgs bundles setting.

The previous statements also hold on smooth projective varieties X defined over an al-

gebraically closed field of characteristic 0 considering the Chern classes ck(E) of a vector

bundle E as elements of the Chow groups Ak(X).
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Positivity conditions for Higgs bundles

The Higgs bundles were defined by Hitchin on compact Riemann surfaces in the rank 2

case [33]. It has been Nitsure to extend in [56] this definition to smooth projective curves

defined over an algebraically closed field and arbitrary rank. Finally, in [61], Simpson

has extended this definition to complex manifolds, and this works also on any smooth

scheme. Moreover, all these authors, in the papers cited above, use a Mumford-Takemoto

(semi)stability condition type for Higgs bundles (see Definition 1.1.1). Finally Bruzzo,

Lanza and Lo Giudice have introduced the definition of curve (semi)stable (Higgs) vector

bundle in [16] (Definition 4.1.1) using the previous conditions of (semi)stability.

Bruzzo and Hernández Ruipérez in [15] investigated how the semistability of a rank r Higgs

bundle E = (E,φ) over X, a smooth complex projective variety, can be encoded by the

nefness of numerical classes which are sensitive to the Higgs field. Here we have investigated

the same assuming that X is defined over an algebraically closed field of characteristic 0,

see Theorems 4.1.2 and 4.1.3, for example.

In order to do this, they have introduced closed subschemes Grs(E) of Grs(E) (the s-th

Grassmann bundle of E), called the s-th Higgs-Grassmann schemes of E, which parametrizes

the rank s Higgs quotient bundles of E. These schemes enjoy a universal property similar

to that of the Grassmann bundles.

Let Qs,E be the restriction of the universal rank s quotient bundle of E to Grs(E); this

is a rank s Higgs quotient bundles of the pullback of E over Grs(E). Bruzzo and Hernández

Ruipérez have defined the numerical classes λs(E) ∈ N1 (Gr1 (Qs,E)) and θs(E) ∈ N1 (Gr1(E))

where s ∈ {1, . . . , r − 1} (see Equations (4.1) and (4.2), respectively). So E is curve

semistable if and only if all classes λs(E) or θs(E), equivalently, are nef ([13, Theorem A.5

and Lemma A.6]).

To go onto generalise these properties from the ordinary setting to the Higgs bundles

setting, one needs a numerically flatness conditions for Higgs bundles analogous to that

for ordinary vector bundles. Indeed, referring to the previous statement (b), it implies (c)

and this is proved using the notion of numerical flat vector bundles.

This notion, together with other, has been introduced by Bruzzo, Hernández Ruipérez

and Graña Otero in [15, 11]. The idea is the following: the first Chern class of E has

to satisfy the positivity conditions given by Nakai, Moǐsezon and Kleiman criteria, i.e.

det(E) has to be either ample or nef, respectively. Of course this is not enough if r ≥ 2, so

they require also the H-ampleness\H-nefness3 of all universal Higgs quotient bundles Qs,E

3H-ample means Higgs ample and H-nef means Higgs nef.
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recursively (see Definitions 3.2.1 and 3.3.1, respectively). For example, let r = 3, then E is

H-ample\H-nef if and only if by definition the following line bundles are ample\nef in the

usual sense: det(E), Q1,E, det (Q2,E), Q1,Q2,E
. Finally, E is H-nflat4 if and only if E and

E∨ are both H-nef.

In this way, where φ = 0, one has the usual definition of Grassmann bundles, universal

quotient bundles and ample\nef\nflat vector bundle.

The curve semistable, H-nef and H-nflat Higgs bundles, over smooth complex projective

variety, have been studied by Biswas, Bruzzo, myself, Graña Otero, Gurjar, Hernández

Ruipérez, Lanza, Lo Giudice and Peragine in [11, 12, 13, 17, 44, 3, 16, 18, 9, 14]. There,

the authors have proved that H-nef Higgs bundles satisfy almost all usual properties of nef

vector bundles (see Lemma 3.3.3). In this thesis, we prove that most of these results hold

also where the underlying field is algebraically closed of characteristic 0 (see Remark 3.3.4

and Proposition 3.3.7).

About the H-ample Higgs bundles, these have been studied in [10], where we prove their

basic properties (see Propositions 3.2.5, 3.2.15, Theorem 3.2.10 and Corollaries 3.2.8 and

3.2.13). We give an application of H-ampleness and H-nefness criteria, as expressed by

Theorems 3.2.6 and 3.2.12, to minimal smooth surfaces of general type defined over an

algebraically closed field of characteristic 0.

Numerically flatness and curve semistable Higgs bundles

In the complex case it has pointed out by Biswas, Bruzzo and Gurjar in [3] the equivalence

between the following facts:

A) let E = (E,φ) be a curve semistable Higgs bundle over X. Then E is semistable with

respect to some polarization H and c2 (End(E)) = 0 ∈ H4(X,Q).

B) the Chern classes of any H-nflat Higgs bundle over X vanish.

Here End(E) = E ⊗ E∨ is the adjoint bundle of E.

It is known that curve semistable Higgs bundles E = (E,φ) are semistable but it is unknown

if this condition implies c2 (End(E)) = 0. This last implication holds for ordinary vector

bundles. The best of our knowledge, curve semistable Higgs bundles E = (E,φ) have

c2(End(E)) vanishes at least in the cases listed in Remark 4.2.6.

4H-nflat means Higgs numerically flat.
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In other words, the equivalence of the previous statement (A) and (B) in the Higgs bundles

setting holds (Theorem 4.2.2), but it is unknown whether one of these statements hold in

general (cfr. Conjectures 2 and 3). The vanishing of the second Chern class of H-nflat Higgs

bundles is the obstruction to prove that all curve semistable Higgs bundles are semistable,

and the corresponding adjoint Higgs bundles have second Chern classes equal to 0. The

inverse implication holds (Theorem 4.2.4), however it has proved by [15, Theorem 1.3] in

the complex setting originally.

In order to state all this in our general setting, we have extended the results of Biswas,

Bruzzo, myself, Graña Otero and Gurjar proved in [13, 3] and [9] (see Lemmata 3.3.8, 4.3.4

and Theorem 4.3.5).

Results

The first innovation of this thesis is a new proof of semistability of tensor product of

semistable Higgs sheaves on smooth projective polarized varieties (X,H) defined over

an algebraically closed field K of characteristic 0 (Theorem 2.2.5). This is a “Lefschetz

principle”-type theorem, because it follows from the fact that a Higgs bundle E is semistable

over X if and only if for an extension field F of K, the pullback of E over X×Spec(K)Spec(F)
is semistable (Lemma 2.2.4). This generalises some results proved by Langton in [43].

Lemma 2.2.4 is the cornerstone which permits us to extend the relations between positivity

conditions and semistability for Higgs bundles over smooth projective varieties proved

assuming K = C to our general assumption on K.

A nice application of this lemma is a new proof of the equivalence between the semistability

of E and End(E) (Lemma 2.3.1). This mimics the proof known in the complex setting:

Higgs sheaves have the Harder-Narasimhan filtration (see Definition 1.4.1 and Theorem

1.4.2) by [63, Section 3] and the tensor product of semistable Higgs sheaves is semistable

by [5, Proposition 4.5] or [34, Theorem 5.4].

These results, together with the fact that semistable Higgs bundles over X with first

and second Chern classes vanish have all Chern classes vanish ([42, Corollary 6]), are

fundamental in order to prove Theorems 4.2.2 and 4.2.4.

As regards H-ample and H-nef Higgs bundles over X, we begin to prove that the category

of H-ample Higgs bundles is closed under finite pullbacks and locally free Higgs quotients

(Proposition 3.2.5).
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Inspired by [3, Lemma 3.3], we characterize H-ample Higgs bundles via their pullback to

smooth irreducible projective curves and the corresponding HN-filtrations (Theorem 3.2.6).

As a corollary of this theorem we prove a Barton-Kleiman-type criterion for H-ampleness

(Corollary 3.2.8). This allows us to prove that the category of H-ample Higgs bundles is

closed under extensions and tensor products (Theorems 3.2.10 and 3.2.12, respectively).

Following the same ideas, starting from Corollary 3.2.8, we complete the results contained

in [3, Section 3] proving a Barton-Kleiman-type criterion for H-nefness (Corollary 3.3.5)

and that the category of H-nef Higgs bundles is closed under extensions (Proposition 3.3.7).

We characterize H-nflat Higgs bundles via Jordan-Hölder filtrations for Higgs sheaves (The-

orem 4.3.5). This was proved by Bruzzo and myself in [9] in the complex setting.

The Jordan-Hölder filtrations of H-nflat Higgs allow us to prove the vanishing of Chern

classes in the case where the quotients of the filtration have rank at most 2 (Corollaries

4.3.6 and 4.3.7). The second corollary holds, as we prove the existence of an irreducible

component of Gr1(E) which is a divisor of Gr1(E) and surjects onto X, where E = (E,φ)

is a rank 2 Higgs bundle (Proposition 3.1.4; in the complex setting, this is [14, Corollary

4.3]).

Finally, we apply these results to minimal smooth projective varieties X. We consider the

so-called Simpson system S over X, a Higgs bundle studied in [61]. In Section 5.1, we

assume thatX is a surface and the Bogomolov-Miyaoka-Yau inequality (5.1) is saturated by

X. Under this assumption we prove that S is curve semistable and H-ample (Proposition

5.1.1 and Lemma 5.1.7, respectively) together with other interesting results (Theorem 5.1.3

and Corollary 5.1.4). These extend results proved by Miyaoka in [51] for complex minimal

smooth surfaces of general type.

In Section 5.2, we assume K = C, dimX = n ≥ 3 and KX is ample. Under these

assumptions, we prove the stability of S with respect to KX (Theorem 5.2.1) and we

give a new proof of the Guggenheimer-Yau inequality (5.2) (Theorem 5.2.6). Again, on

X which saturates (5.2), we prove other interesting results (Theorem 5.2.7 and Corollary

5.2.8), the H-ampleness and the curve semistability of S (Corollary 5.2.2 and Lemma 5.2.3,

respectively).

The stability of S allow us to give a new proof of the fact that minimal smooth complex

projective varieties of general typeX which saturate (5.2) and have ample canonical bundle,

are uniformized by the complex ball Bn and their cotangent bundle is ample (Theorem 5.2.9

and Corollary 5.2.4, respectively).
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Contents

In Chapter 1 we recall some notions about Higgs sheaves on smooth projective varieties

X, defined over an algebraically closed field of characteristic 0. We extend their basic

properties, as proved in [34], to our setting. We study the HN-filtration of Higgs sheaves,

which was introduced by Simpson in [63] originally only in the complex setting; furthermore

we prove the so-called Maximal Property of the HN-Polygon for Higgs sheaves (see the

subsection 1.4.2). This property has been proved by Shatz in [60] for torsion-free coherent

sheaves originally.

However, the proofs of some results of this chapter require the semistability of the tensor

product of semistable Higgs sheaves. This is available in the complex setting ([5, 34]),

therefore in Chapter 2 we extend this result to our setting (Theorem 2.2.5).

In Chapter 3 we recall the notion of Higgs-Grassmann schemes Grs(E) ⊆ Grs(E) of a rank

r Higgs bundle E = (E, φ) over X, where s ∈ {1, . . . , r−1}. As wrote above, these schemes

are used to provide notions of H-ample and H-nef Higgs bundles.

We prove basic properties of H-ample Higgs bundles, and criteria for ampleness and numer-

ical effectiveness of Higgs bundles of the Barton-Kleiman type (Corollaries 3.2.8 and 3.3.5,

respectively). Both criteria use explicitly the HN-filtration for Higgs bundles over smooth

irreducible projective curves. We prove that the notion of H-ampleness is well-behaved

with respect to tensor products and extensions (Theorems 3.2.10 and 3.2.12, respectively).

These positivity conditions for Higgs bundles are applied in chapter 4 to study the semista-

bility of particular Higgs bundles over X: the curve semistable Higgs bundles (Definition

4.1.1). We state and prove the equivalence of the curve semistability for vector bundles

with other conditions (Theorem 4.2.1). This is possible in the setting of vector bundles

over X because in [42] Langer has extended [62, Theorem 2] from C to K.

In [9] we studied the Chern classes of H-nflat Higgs bundles over complex simply-connected

Calabi-Yau varieties. This is made characterizing the H-nflat Higgs bundles via JH-

filtrations. In Section 4.3 we generalise this to our setting.

Finally, in Chapter 5 we study the minimal smooth complex projective varieties as de-

scribed above.

In Appendix A, we recall the notion of 1-numerically flat Higgs bundle (1-H-nflat, for

short) and the main properties of these objects. This is made because these objects are

cited in Remark 4.2.6.
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Notation

All rings are commutative with unit. Analogously, any algebra over a ring is commutative

and associative.

By a projective variety X we mean a projective integral scheme of dimension n ≥ 1 and of

finite type, defined over an algebraically closed field K of characteristic 0, unless otherwise

indicated; in particular these schemes are Noetherian, irreducible, reduced and separated

over Spec(K). If dimX ∈ {1, 2} we shall write projective curve or projective surface,

respectively.

We shall denote by E a rank r ≥ 1 vector bundle over X, i.e. a locally free sheaf of OX-

modules on X, while we shall use the script character E to indicate any coherent sheaf.

Somewhere we shall confuse interchangeably vector bundles and locally free sheaves.

As usual the degree d of a vector bundle of rank r (with respect to a fixed polarization H

of X) is defined as the degree of its determinant bundle
r∧
E ∼= det(E) ∈ Pic(X) (with

respect to H), while the degree of any coherent sheaf E is defined using free resolutions; in

other words, det(E) def.=

rank(E)∧
E∨∨.

Let X be a scheme of finite type over an algebraically closed field of characteristic 0. We

denote by N1(X) =
Div(X)

≡num

⊗Z R the real vector space of real 1-cocycles on X modulo

numerical equivalence. We denote by Ak(X) =
Zn−k(X)

≡rat

the Abelian group of k-cocycles

on X modulo rational equivalence.
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Chapter 1

Higgs sheaves: an overview

1.1 Basic notions

Let X be a smooth scheme over K, an algebraically closed field of characteristic 0. Let Ω1
X

be the cotangent bundle of X and let Ωk
X =

k∧
Ω1
X , where k ∈ {1, . . . , n = dimX}.

Definition 1.1.1. A Higgs sheaf E is a pair (E , φ) where E is an OX-coherent sheaf

equipped with a morphism φ : E → E ⊗ Ω1
X called Higgs field such that the composition

φ ∧ φ : E φ−→ E ⊗ Ω1
X

φ⊗Id−−−→ E ⊗ Ω1
X ⊗ Ω1

X → E ⊗ Ω2
X

vanishes. This last request is called the integrability condition. A Higgs subsheaf of E is a

φ-invariant subsheaf F of E , that is φ(F) ⊆ F ⊗Ω1
X . A Higgs quotient of E is a quotient

sheaf of E such that the corresponding kernel is φ-invariant. A Higgs bundle is a Higgs

sheaf whose underlying coherent sheaf is locally free.

Remark 1.1.2.

a) The Higgs field φ is a global section of End(E)⊗ Ω1
X .

b) If n = 1 and K = C, we have the original definition of Higgs bundle given by Hitchin

in [33], since Ω1
X = KX (the canonical bundle of X). ♢

Here we briefly recall some operations on Higgs sheaves which will be useful in the next

(see also [58]).

We have a natural dual morphism φ∨ : E∨ ⊗ (Ω1
X)

∨ → E∨; the morphism

E∨ ∼= E∨ ⊗OX
Id⊗Tr∨−−−−→ E∨ ⊗

(
Ω1
X

)∨ ⊗ Ω1
X

φ∨⊗Id−−−−→ E∨ ⊗ Ω1
X

1



2 Basic notions

defines a Higgs field on E∨ which is denoted, by abuse of notation, as φ∨. The pair

E∨ = (E∨, φ∨) is the dual Higgs sheaf of E.

On the other hand, if Y is another smooth projective variety and f : Y → X is a morphism,

on f ∗E one can define the following Higgs field

f ∗E f∗φ−−→ f ∗E ⊗ f ∗Ω1
X

Id⊗f∗−−−→ f ∗E ⊗ Ω1
Y

which is denoted, by abuse of notation, as f ∗φ. The pair defined by f ∗E = (f ∗E , f ∗φ) is

the pullback Higgs sheaf of E via f .

Given two Higgs sheaves E1 = (E1, φ1) and E2 = (E2, φ2) on X, we can construct the direct

sum E1⊕E2 = (E1 ⊕ E2, φ1 ⊕ φ2 ≡ pr∗1 φ1 + pr∗2 φ2), where prk : E1⊕E2 → Ek is the k-th ca-

nonical projection; and the tensor product E1⊗E2 = (E1 ⊗ E2, φ1 ⊗ φ2 ≡ φ1 ⊗ IdE2 +IdE1 ⊗ φ2),

where IdEk is the identity automorphism of Ek, in both cases k ∈ {1, 2}.

Here we recall the definition of morphisms of Higgs sheaves.

Definition 1.1.3. Let E1 = (E1, φ1) and E2 = (E2, φ2) be Higgs sheaves. A morphism

f : E1 → E2 of Higgs sheaves is a morphism of OX-modules (indicated again as) f : E1 → E2
such that the following diagram

E1
f //

φ1

��

E2
φ2

��
E1 ⊗ Ω1

X f⊗Id
// E2 ⊗ Ω1

X

commutes.

The kernel and the image of morphisms of Higgs sheaves are Higgs sheaves. In fact, if

f : E1 → E2 is a morphism of Higgs sheaves, let K = ker(f) and let i : K → E1 be the

obvious inclusion, we have the following commutative diagram (with left exact rows)

0 // K i //

φ1|K
��

E1
f //

φ1

��

E2
φ2

��
0 // K ⊗ Ω1

X i⊗Id
// E1 ⊗ Ω1

X f⊗Id
// E2 ⊗ Ω1

X

In this way the pair K = (K, φ1|K) becomes a Higgs subsheaf of E1. Similarly, let F = Im(f)

and let j : F → E2 be the inclusion morphism, we write f = j ◦ p and obtain the following
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commutative diagram

E1
p //

φ1

��

F j //

φ2|F
��

E2

φ2

��
E1 ⊗ Ω1

X p⊗Id
// F ⊗ Ω1

X j⊗Id
// E2 ⊗ Ω1

X

.

F = (F , φ2|F) is a Higgs sheaf. Furthermore, from the above diagram it follows that F is

a Higgs subsheaf of E2 and at the same time a Higgs quotient of E1.

A short exact sequence of Higgs sheaves (also called an extension of Higgs sheaves or a

Higgs extension)

0 // K // E // Q // 0 (1.1)

is defined in the obvious way.

1.2 Mumford-Takemoto (semi)stability condition

This section is mainly based on [34].

Let (X,H) be a smooth polarized variety and let E = (E , φ) be a torsion-free Higgs sheaf

on X, if not otherwise indicated. One defines the degree deg(E) and the rank rank(E) of

E simply those of E , respectively. In particular

deg(E) =

∫
X

c1(det(E)) ·Hn−1.

One defines the slope of E as µ(E) =
deg(E)

rank(E)
∈ Q. In a similar way as for sheaves (see

[31]) there is a notion of stability for Higgs sheaves (see [5, 34], for example).

Definition 1.2.1. E is semistable (respectively, stable) if µ(F) ≤ µ(E) (respectively,

µ(F) < µ(E)) for every Higgs subsheaf F of E with 0 < rank(F) < rank(E). In the

other eventuality, E is unstable.

Example 1.2.2. By convection, any torsion-free Higgs sheaf on X of rank 1 is stable. △

Since the notion of (semi)stability for Higgs sheaves makes only reference to Higgs sub-

sheaves, a sheaf could be (semi)stable as a Higgs sheaf, but not as ordinary sheaf, as the

next example proves.
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Example 1.2.3 ([17, Example 2.9]). Let E =
(
E = K

1
2 ⊕K− 1

2 , φ
)
, where K is the cano-

nical bundle of a smooth projective curve X of genus g ≥ 2, K
1
2 is a line bundle over X

whose square is K and

φ =

(
0 ω

1 0

)
, 1 ∈ Hom

(
K

1
2 , K− 1

2 ⊗K
)
, ω ∈ H0(X,K2).

E is a stable Higgs bundle, because there are no subbundles of positive degree preserved

by φ. Indeed, let L be a line subbundle of E then L is either K− 1
2 or K

1
2 . Since

deg
(
K

1
2

)
= g − 1 > 0, deg

(
K− 1

2

)
= 1− g < 0

L destabilizes E if and only if L = K
1
2 . However K

1
2 does not destabilize E, because this

is not φ-invariant. △

Remark 1.2.4.

a) Since the previous notions depend on the fixed polarization H of X, we should say

H-degree of, H-slope of, H-(semi)stable, H-polystable Higgs sheaf, respectively.

For simplicity, we shall skip any reference to the fixed polarization H of X if there is

no confusion.

b) There exists another possible definition of (semi)stability for Higgs sheaves inspired by

Gieseker and Maruyama (semi)stability for vector bundles (cfr. [35]) which will not be

used in this thesis. ♢

Any exact sequence of Higgs sheaves as in (1.1) satisfies

rank(K)(µ(E)− µ(K)) + rank(Q)(µ(E)− µ(Q)) = 0 (1.2)

if rank(K), rank(Q) > 0 (see [41, Lemma V.7.3]). From equality (1.2) follows that the

condition of (semi)stability can be written in terms of Higgs quotient sheaves instead of

Higgs subsheaves. As a direct consequence of equality (1.2), we have the following result.

Proposition 1.2.5. E is (semi)stable if µ(E) <
(≤)

µ(Q) for every Higgs quotient Q of E

with 0 < rank(Q) < rank(E).

Actually, we do not have to consider all Higgs quotient sheaves of a torsion-free Higgs sheaf

on X in order to check its (semi)stability.
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Proposition 1.2.6.

a) E is (semi)stable if and only if µ(F) <
(≤)

µ(E) for every Higgs subsheaf F of E with

0 < rank(F) < rank(E) such that E/F is a torsion-free Higgs quotient.

b) E is (semi)stable if and only if µ(E) <
(≤)

µ(Q) for every torsion-free Higgs quotient Q

with 0 < rank(Q) < rank(E).

Remark 1.2.7. A (Higgs) subsheaf F of E such that E/F is a torsion-free (Higgs) quotient

is called a saturated (Higgs) subsheaf of E . ♢

Proof. Consider an exact sequence of Higgs sheaves as in (1.1) and denote by ψ the

Higgs field of Q. Let T be the torsion subsheaf of Q, the underlying sheaf to Q, since1

ψ(T ) ⊆ T ⊗ Ω1
X , the pair T =

(
T , ψ|T

)
is a Higgs subsheaf of Q2, with torsion-free Higgs

quotient Q. Furthermore deg T ≥ 0. If we define K as the kernel of the Higgs morphism

E ↠ Q, we have the following commutative diagram of Higgs sheaves

0

��
0

��

T

��
0 // K //

��

E //

Id
��

Q //

��

0

0 // K //

��

E // Q //

��

0

K/K

��

0

0

where all rows and columns are exact. K is a Higgs subsheaf of K by the couniversal

property of kernels of morphisms, and K/K ∼= T by the Snake Lemma. From all this we

1ψ is a morphism of OX -modules, then ψ(T ) is contained in the torsion part of F ⊗ Ω1
X , which is

exactly T ⊗ Ω1
X because Ω1

X is locally free.
2 In general, the torsion subsheaf of a Higgs sheaf is always a Higgs subsheaf. Indeed, let T be a torsion

subsheaf of E, then φ(T ) is contained in the torsion part of E⊗Ω1
X which is exactly T ⊗Ω1

X , because Ω1
X

is locally free.
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have

deg(Q) = deg(T) + deg
(
Q
)
≥ deg

(
Q
)
,

deg
(
K
)
= deg(T) + deg(K) ≥ deg(K).

Since T is torsion, rank(Q) = rank
(
Q
)
and rank(K) = rank

(
K
)
. So that

µ(E) <
(≥)

µ
(
K
)
= µ(K),

µ(E) <
(≤)

µ
(
Q
)
= µ(Q),

and E is (semi)stable by Definition 1.2.1 or by Proposition 1.2.5. Q.e.d.

Proposition 1.2.8. Let L be a Higgs line bundle over X. Then E ⊗ L is (semi)stable if

and only if E is (semi)stable.

Proof. Note that µ(E⊗ L) = µ(E) + deg(L). Let E be (semi)stable and let F be a Higgs

subsheaf of E⊗ L with 0 < rank(F) < rank(E⊗ L), then

µ(F) = µ (F⊗ L∨) + deg(L) <
(≤)

µ(E) + deg(L) = µ(E⊗ L)

and E⊗ L is (semi)stable. The proof of the inverse implication is obvious. Q.e.d.

Since det(E) ∼=

(
r∧
E

)∨∨

, then φ defines a Higgs field det(φ) on det(E) i.e. det(E) = (det(E), det(φ))

is a locally free Higgs sheaf, hence it is a Higgs line bundle. On the other hand, by [31,

Corollary 1.2] the determinant bundle of any torsion-free sheaf F satisfies det (F∨) = det(F)∨.

Consequently, if F is torsion-free then µ(F) = −µ (F∨) and we have the following result.

Lemma 1.2.9. E is (semi)stable if and only if E∨ is (semi)stable.

Proof. Assume first that E∨ is (semi)stable and consider a short exact sequence of Higgs

sheaves (1.1) on X with Q torsion-free and 0 < rank(Q) < rank(E). Dualizing it, we

obtain the following left exact sequence of Higgs sheaves

0 // Q∨ // E∨ // K∨ .

Since E and Q are both torsion-free, we have from the above sequence

−µ(E) = µ (E∨) <
(≤)

µ (Q∨) = −µ(Q)
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i.e. E is (semi)stable by Proposition 1.2.5.

Now let E be (semi)stable and consider a short exact sequence of Higgs sheaves on X

0 // K0
// E∨ // Q0

// 0

with Q0 torsion-free and 0 < rank(Q0) < rank(E∨). Dualizing this sequence, we have

again a left exact sequence of Higgs sheaves

0 // Q∨
0

// E∨∨ // K∨
0 .

Since E is torsion-free, the natural morphism δ : E → E∨∨ is injective and thus we have

E ∼= Im(δ) and this is a Higgs subsheaf of E∨∨. Since there may be no confusion, we will

write simply E instead of Im(δ). After defining H0 = E∩Q∨
0 and H1 = E/H0, we have the

following diagram

0

��

0

��
0 // H0

//

��

E

σ
��

// H1
// 0

0 // Q∨
0

p∨ //

ϖ

��

E∨∨ //

π

��

K∨
0

Q∨
0 /H0

��

E∨∨/E

��
0 0

where the columns and the first row are exact and a posteriori also the second and third

row; p∨ is the obvious inclusion. Since ϖ (H0) = 0 and p∨ (π (H0)) = 0, by the universal

property of quotients there exists a unique morphism q : Q∨
0 /H0 → E∨∨/E which makes

commutative the following diagram

0

��

0

��
0 // H0

//

��

E

σ
��

// H1
// 0

0 // Q∨
0

p∨ //

ϖ

��

E∨∨ //

π

��

K∨
0

Q∨
0 /H0

��

q // E∨∨/E

��

// H2
// 0

0 0
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q is a monomorphism of Higgs sheaves. Indeed, reasoning on the stalks, let x ∈ X and let

t ∈ Q∨
0,x/H0,x, there exists s ∈ Q∨

0,x such that ϖx(s) = t, then

0 = qx(t) = qx(ϖx(s)) = πx ((p
∨)x (s)) = πx(s)

def.⇐⇒ s ∈ Ex ⇒ s ∈ H0,x
def.⇐⇒ t = 0,

in other words, q is a monomorphism of Higgs sheaves. It follows that H2 is the Higgs

quotient of E∨∨/E over Q∨
0 /H0, and the bottom row is exact also on the left.

By construction, E∨∨/E is a torsion Higgs sheaf; by [57, Corollary at page 75] there ex-

ists a codimension 2 closed subset Z of X such that E|X\Z is a Higgs bundle; and it

follows from this that X \ Z ⊆ Supp (E∨∨/E). The same reasoning holds for Q∨
0 /H0,

i.e. codimX Supp (Q∨
0 /H0) ≥ 2. Since [41, Proposition VII.6.14] works also in the present

hypotheses:

deg (Q∨
0 /H0) = 0 ⇒ deg(H0) = deg (Q∨

0 ) ,

furthermore, since Q∨
0 /H0 is a torsion Higgs sheaf:

rank (Q∨
0 /H0) = 0 ⇒ rank(H0) = rank (Q∨

0 ) .

By definition and hypotheses:

−µ(Q0) = µ (Q∨
0 ) = µ(H0) <

(≤)
µ (E) = −µ (E∨)

µ(Q0) <
(≥)

µ (E∨) ,

and by Proposition 1.2.5 we have the claim. Q.e.d.

Corollary 1.2.10. E is (semi)stable if and only if the Higgs sheaf E∨∨ is (semi)stable.

As the definition of (semi)stability for Higgs sheaves uses only proper Higgs subsheaves of

positive rank, but it may be reformulated in terms of Higgs subsheaves of arbitrary positive

rank and not necessarily proper.

Proposition 1.2.11.

a) E is semistable if and only if µ(F) ≤ µ(E) for every Higgs subsheaf F of E with

0 < rank(F) ≤ rank(E).

b) E is semistable if and only if µ(E) ≤ µ(Q) for every Higgs quotient Q of E with

0 < rank(Q) ≤ rank(E).
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1.3 Properties of semistable Higgs sheaves

In a similar way to the case of vector bundles, we have the following results concerning the

first and second Chern classes, direct sums and short exact sequences of semistable Higgs

sheaves.

We start from the famous and very important Bogomolov inequality for Higgs sheaves. We

advice that, by [48, Theorem 1.9 and Section 11], we can apply the usual theory of Chern

classes for locally free sheaves to coherent sheaves on X. In a sense which be explained in

chapter 4, this is the starting point for the topics studied in this thesis.

Theorem 1.3.1 ([42, Theorem 7]). Let E = (E , φ) be a rank r semistable Higgs sheaf on

X, then ∫
X

(
c2(E)−

r − 1

2r
c1(E)2

)
·Hn−2 ≥ 0.

We refer to the original paper for a proof, if one assumes K = C and E is locally free the

previous theorem is [61, Proposition 3.4].

Theorem 1.3.2. Let E1 and E2 be torsion-free Higgs sheaves on X. Then E1 ⊕ E2 is

semistable if and only if E1 and E2 are both semistable with µ (E1) = µ (E2) = µ.

Proof. Let E1 and E2 be semistable and let F be a torsion-free Higgs subsheaf of E1 ⊕ E2

with 0 < rank(F) < rank(E1 ⊕ E2). Then we have the following commutative diagram

0

��

0

��

0

��
0 // F1

//

��

F //

��

F2
//

��

0

0 // E1
// E1 ⊕ E2 pr2

// E2
// 0

where the rows and the columns are exacts, F1 = E1 ∩F and F2 is the image of F1 via pr2.

Trivially we have:

deg(E1 ⊕ E2) = deg (E1) + deg (E2) ;

since E1 and E2 have the same slope µ, by Formula (1.2) µ(E1 ⊕ E2) = µ; by hypothesis:

∀k ∈ {1, 2}, deg(Fk) ≤ µ rank(Fk),

then

µ(F) =
deg (F1) + deg (F2)

rank (F1) + rank (F2)
≤ µ.
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E1 ⊕ E2 is semistable. Vice versa, let E1 ⊕ E2 be semistable, since E1 and E2 are both

proper torsion-free Higgs subsheaves and torsion-free Higgs quotient sheaves of E1 ⊕ E2 of

positive rank, we have µ(E1⊕E2) = µ. Let Qk be a torsion-free Higgs quotient of Ek, then

by Proposition 1.2.6.b:

µ(Qk) <
(≥)

µ(E1 ⊕ E2) = µ(Ek)

i.e. Ek is semistable, where k ∈ {1, 2}. Q.e.d.

Definition 1.3.3. E is polystable if it is a direct sum of stable Higgs sheaves having the

same slope.

Before starting the study of extensions of semistable Higgs sheaves, we need the following

properties of morphisms of semistable (torsion-free) Higgs sheaves.

Proposition 1.3.4. Let f : E1 → E2 be a morphism of semistable torsion-free Higgs

sheaves on X. Then we have the following statements.

a) If µ (E1) > µ (E2), then f = 0 (f is the zero morphism).

b) If µ (E1) = µ (E2) and E1 is stable, then rank (E1) = rank(Im(f)) and f is injective

unless f = 0.

c) If µ (E1) = µ (E2) and E2 is stable, then rank (E2) = rank(Im(f)) and f is generically

surjective unless f = 0.

d) If µ (E1) = µ (E2), and f ̸= 0 then ker(f) and Im(f) are semistable Higgs sheaves of

the same common slope.

e) If µ (E1) = µ (E2), E1 and E2 are stable, then f is an isomorphism unless f = 0.

In the following proofs: E1 and E2 are both semistable with slopes µ1 and µ2 and ranks

r1 and r2, respectively. Let K = ker(f),F = Im(f), then F is a torsion-free quotient Higgs

sheaf of E1 and a Higgs subsheaf of E2.

Proof. (a). Assuming that f ̸= 0 then

µ(F) ≤ µ2 < µ1 ≤ µ(F)

which is an absurd. Then f must be the zero morphism.

(b). Assuming that f ̸= 0 and r1 > rank(F), by hypotheses:

µ(F) ≤ µ2 = µ1 < µ(F)
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which is an absurd. Then rank(F) must be r1 and f is injective.

(c). Assuming that f ̸= 0 and r2 > rank(F), by hypotheses:

µ(F) < µ2 = µ1 ≤ µ(F)

which is an absurd. Then rank(F) must be r2 and there exists an open dense subset U3 of

X such that for any x ∈ U, fx : E1,x → E2,x is surjective.

(d). Since f ̸= 0 then F is a Higgs subsheaf of E2. By hypothesis µ(F) ≤ µ, the common

value of µ1 and µ2. However F ∼= E1/K and therefore µ(F) = µ(E1/K) ≥ µ by Proposition

1.2.11.b and we have µ(F) = µ. Considering the short exact sequence

0 // K // E1
// E1/K // 0,

by Equation (1.2) we have µ(K) = µ. Finally, since any Higgs subsheaf G of K is a Higgs

subsheaf of E1, we have

µ(G) ≤ µ = µ(K),

i.e. K is semistable. Analogously we prove the semistability of F.

(e). Assuming that f ̸= 0, by items b and c f is injective, rank(F) = rank (E1) = rank (E2)

and µ(F) = µ (E2). The stability hypothesis forces F = E2, f is surjective so f is an

isomorphism. Q.e.d.

Due to Propositions 1.2.11 and 1.3.4 we are in a position to study the extensions of

semistable Higgs sheaves.

Lemma 1.3.5. Let 0 // E1
i // E

p // E2
// 0 be a short exact sequence of torsion-

free Higgs sheaves on X. If E1 and E2 are both semistable with µ (E1) = µ (E2) = µ then

E is semistable with the same slope µ.

Proof. Using Equation (1.2) we have µ(E) = µ. If E is not semistable then there exists

by Proposition 1.2.11 a non-zero Higgs subsheaf F of E such that µ(F) > µ. Without

loss of generality, we can assume that F is semistable4. One has a morphism f : F → E2

induced by p and µ(F) > µ (E2), by Proposition 1.3.4.a f = 0. Noting that E1 = ker(p),

3By [57, Corollary at page 75] there exists a codimension 2 closed subset Z of X such that Ek|X\Z are

Higgs bundles and we set U = X \ Z, where k ∈ {1, 2}.
4If it is not, we choose a non-zero Higgs subsheaf F1 of F with 0 < rank (F1) < rank(F) and

µ (F1) > µ(F). If F1 is semistable we finish, otherwise we repeat this reasoning until we find a semistable

non-zero Higgs subsheaf of F. All this works because in the worst case we find a Higgs line subbundle of

E which is stable by Example 1.2.2.
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by couniversal property of kernels there exists a unique morphism g : F → E1 such that

i ◦ g is the inclusion of F in E. Again, by Proposition 1.3.4.a g = 0 and therefore F is the

zero subsheaf of E: this is a contradiction with the instability of E. By all this, we have

the claim. Q.e.d.

1.4 Harder-Narasimhan filtration for Higgs sheaves

This section is mainly based on [47].

We start by recalling the main definitions of this section.

Definition 1.4.1. Let E be a torsion-free Higgs sheaf. A filtration in Higgs subsheaves

{0} = E0 ⫋ E1 ⫋ . . . ⫋ Em−1 ⫋ Em = E, (1.3)

is called an Harder-Narasimhan filtration of E (HN-filtration, for short) if the successive

Higgs quotient sheaves Ei/Ei−1 are semistable for any i ∈ {1, . . . ,m}, and the sequence

µi = µ(Ei/Ei−1) is strictly decreasing.

Theorem 1.4.2. There exists a unique HN-filtration for E.

In order to prove the previous theorem, we need the following preliminary lemma.

Lemma 1.4.3. There exists an integer number N(E) such that for every Higgs subsheaf F

of E we have deg(F) ≤ N(E).

Proof. Let rank(E) = r. If r = 1, by Example 1.2.2 and Proposition 1.2.11.a, for any

Higgs subsheaf F of E with rank(F) = 1 we have deg(F) ≤ deg(E); therefore we get

N(E) = max{0, deg(E)}. Let r ≥ 2, then we choose a non-zero Higgs subsheaf K of E

such that the corresponding Higgs quotient Q is torsion-free and we obtain the usual short

exact sequence (1.1) with 0 < rank(K), rank(Q) < r. Let F be a Higgs subsheaf of E;

we set F1 = K ∩ F. Let F2 be the image of F1 in Q. Since rank (F1) ≤ rank(K) and

rank (F2) ≤ rank(Q), by induction:

deg(F) = deg (F1) + deg (F2) ≤ N(K) +N(Q).

Then we let N(E) = min{N(K) + N(Q)}, where K and Q range in the sets of Higgs

subsheaves and the corresponding Higgs quotient (torsion-free) sheaves of E, respectively.

From all this, we have the claim. Q.e.d.
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Proof of Theorem 1.4.2. If E is semistable then 0 ⫋ E is the HN-filtration of E, in

particular this happens if rank(E) = r = 1 by Example 1.2.2. Otherwise, let r ≥ 2 and let

S = {µ(F) ∈ Q | F is a torsion-free Higgs subsheaf of E with 0 < rank(F) ≤ rank(E)}.

It follows from the previous lemma that S has a largest element µ. Then there exists

a positive rank torsion-free Higgs subsheaf E1 of E such that µ (E1) = µ and its rank

is as large as possible. Moreover, E1 is semistable: it cannot admit a Higgs subsheaf of

larger slope, because that would contradict the maximality of µ. Let Ẽ = E/E1, of course

1 ≤ rank
(
Ẽ
)
< r. By induction it follows that Ẽ admits an HN-filtration

{0} = Ẽ0 ⫋ Ẽ1 ⫋ . . . ⫋ Ẽl−1 ⫋ Ẽl = Ẽ,

with j ∈ {1, . . . , l}, µ̃j = µ
(
Ẽj/Ẽj−1

)
. For any j ∈ {0, . . . , l} let Ej+1 be the inverse image

of Ẽj in E, in this way we have a filtration

{0} = E0 ⫋ E1 ⫋ . . . ⫋ El ⫋ El+1 = E.

By construction:

∀j ∈ {1, . . . , l}, Ej+1/Ej ∼= (Ej+1/E1) / (Ej/E1) = Ẽj/Ẽj−1

and these Higgs quotient sheaves are semistable of slopes µ̃j, respectively; in particular

µ̃1 > . . . > µ̃l. If µ̃1 ≥ µ then we consider the short exact sequence

0 // E1
// E2

// Ẽ1
// 0,

µ (E2) =
deg (E1) + deg

(
Ẽ1

)
rank (E1) + rank

(
Ẽ1

) ≤
µ rank (E1) + µ̃1 rank

(
Ẽ1

)
rank (E1) + rank

(
Ẽ1

) ≤ µ̃1

µ (E2) =
deg (E1) + deg

(
Ẽ1

)
rank (E1) + rank

(
Ẽ1

) ≥
deg (E1) + deg

(
Ẽ1

)
1

µ
deg (E1) +

1

µ̃1

deg
(
Ẽ1

) ≥ µ

i.e. µ = µ (E1) ≤ µ (E2) ≤ µ
(
Ẽ1

)
= µ̃1, but this is a contradiction with the maximality

of µ in S. Therefore µ > µ̃1 > . . . > µ̃l, in other words E admits an HN-filtration.

Let E′
1 be another positive rank torsion-free Higgs subsheaf of E such that µ(E′

1) = µ; by

the same reasoning E′
1 is semistable. Let p : E → E/E′

1, if E1 ̸= E′
1 then p (E1) ̸= 0, and we

consider the short exact sequence of Higgs sheaves

0 // K // E1
p // p (E1) // 0;
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by Proposition 1.2.11 µ(K) ≤ µ ≤ µ(p (E1)). On the other hand, we have the following

short exact sequence of Higgs sheaves

0 // E′
1

// F
p // p (E1) // 0;

where F is the inverse image of p(F) = p (E1) in E. By construction µ(F) < µ = µ(E′
1), in

other words:

µ(F)− µ (E1) < 0 ⇐⇒ µ(F)− µ(p (E1)) > 0

by Equation (1.2), i.e. µ(p (E1)) < µ(E′
1) and this is a contradiction by Proposition

1.2.11.b.

From all this, by induction E admits a unique HN-filtration. Q.e.d.

Definition 1.4.4. The torsion-free Higgs sheaf E1 is called the maximal destabilizing Higgs

subsheaf of E.

This torsion-free Higgs subsheaf can be characterized in the following alternative way.

Lemma 1.4.5 (cfr. [4, Lemma 4.2]). Let

{0} = E0 ⫋ E1 ⫋ . . . ⫋ Em−1 ⫋ Em = E

be a filtration of torsion-free Higgs subsheaves such that

� E1 is semistable;

� for any i ∈ {1, . . . ,m},Ei/Ei−1 is semistable and µ (E1) > µ(Ei/Ei−1).

Then E1 is the maximal destabilizing Higgs subsheaf of E.

Proof. Let E′
1 be a torsion-free semistable Higgs subsheaf of E such that µ(E′

1) ≥ µ (E1).

Considering the morphism

E′
1 ↪→ Em = E ↠ Em/Em−1,

since µ(E′
1) > µ (E1) ≥ µ(Em/Em−1), by Proposition 1.3.4.a this morphism is the zero

morphism. In other words, E′
1 ⊆ Em−1. Repeating this construction m− 1 times, we have

E′
1 ⊆ E1 and µ(E′

1) = µ (E1), i.e. E1 is the maximal destabilizing Higgs subsheaf of E.

Q.e.d.
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1.4.1 Properties of Harder-Narasimhan filtration

of Higgs sheaves, Part I

Using the notations (1.3), let µmin(E) = µm and let µmax(E) = µ1.

Proposition 1.4.6. Let E1 and E2 be torsion-free Higgs sheaves on X.

a) If µmin (E1) > µmax (E2) then Hom(E1,E2) = {0}.

b) If there exists a surjective morphism e : E1 ↠ E2 then µmin (E1) ≤ µmin (E2).

c) If there exists an injective morphism m : E1 ↣ E2 then µmax (E1) ≤ µmax (E2).

d) µmin(E1⊕E2) = min{µmin (E1) , µmin (E2)}, µmax(E1⊕E2) = min{µmax (E1) , µmax (E2)}.

In the following proofs, {0} = Ek,0 ⫋ Ek,1 ⫋ . . . ⫋ Ek,mk−1 ⫋ Ek,mk
= Ek is the HN-

filtration of Ek, where k ∈ {1, 2}.

Proof. (a). Suppose that there exists 0 ̸= f ∈ Hom(E1,E2), let i be the minimal index

such that f(E1,i) ̸= 0 and let j be the minimal index such that f(E1,i) ⊆ E2,j. Then there

is a non-trivial morphism f̃ : E1,i/E1,i−1 → E2,j/E2,j−1, but

µ(E1,i/E1,i−1) ≥ µmin (E1) > µmax (E2) ≥ µ(E2,j/E2,j−1)

and this is absurd by item a.

(b). Considering the following diagram

E1

e0 %%

e // E2

��

// 0

E2/E2,m2−1

��
0

where the row and column are right exact and the triangle commutes. Since e is a surjective

morphism, e0 is not the zero morphism; by Proposition item a:

µmin (E1) ≤ µmax(E2/E2,m2−1) = µ(E2/E2,m2−1) ≤ µmin (E2) .

(c). Let j be the minimal index such thatm(E1,1) ⊆ E2,j, by hypothesis we have a non-zero

morphism m̃ : E1,1 → E2,j/E2,j−1, then by Proposition 1.3.4.a:

µmax (E1) = µ(E1,1) ≤ µ(E2,j/E2,j−1) ≤ µmax (E2) .
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(d). By items c and b:

µmin(E1 ⊕ E2) ≤ min{µmin (E1) , µmin (E2)},
µmax(E1 ⊕ E2) ≤ min{µmax (E1) , µmax (E2)}.

By the proof of Theorem 1.4.2 there exists a positive rank Higgs subsheaf F of E1 ⊕ E2

such that µ(F) = µmin(E1 ⊕ E2) and is semistable. Since F is the maximal destabilizing

Higgs subsheaf of E1 ⊕ E2, we have:

min{µmin (E1) , µmin (E2)} ≤ µ(F),

i.e. we prove the first equality. Analogously, by the proof of Theorem 1.4.2 there exists

a torsion-free Higgs quotient Q of E1 ⊕ E2 for which µ(Q) = µmax(E1 ⊕ E2) and it is

semistable. Since Q is the maximal destabilizing torsion-free Higgs quotient of E1 ⊕ E2,

we have:

min{µmax (E1) , µmax (E2)} ≤ µ(Q)

i.e. we prove the second equality. Q.e.d.

1.4.2 Harder-Narasimhan polygon for Higgs sheaves

Using the definition 1.4.1 of the HN-filtration, we consider the points (rank(Ei), deg(Ei)) ∈ R2

and we denote them Pi, where i ∈ {0, . . . ,m}.

Definition 1.4.7. The convex hull of the set {Pi ∈ R2}i∈{0,...,m} is called the HN-polygon

of E.

Remark 1.4.8. By construction, the slope of the line passing through the points Pi−1

and Pi is µi, for any i ∈ {1, . . . ,m}. The slope of the line passing through the points P0

and Pm is µ(E). Since µ1 > . . . > µm, the line segments P0Pm, Pi−1Pi are the sides of the

HN-polygon of E. ♢

Theorem 1.4.9 (Maximal Property of HN-Polygon, cfr. [60, Theorem 2]). Let F be

a positive rank Higgs subsheaf of E. The point (rank(F), deg(F)) ∈ R2 lies either on or

below the HN-polygon of E. As a consequence, any polygon associated to a filtration of E

in Higgs subsheaves is dominated5 by the HN-polygon.

5Let {0} = F0 ⫋ F1 ⫋ . . . ⫋ Fm−1 ⫋ Fm = E be a filtration of E in Higgs subsheaves. We posit

Qj = (rank (Fj) ,deg (Fj)) ∈ R2 for any j ∈ {1, . . . ,m}. Since any Qj is on or below the HN-polygon of

E, we say that the polygon determined by Qj ’s is dominated by HN-polygon.
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Proof. Let E be semistable, in particular this happens if rank(E) = r = 1. By definition,

for any positive rank Higgs subsheaf F we have µ(F) ≤ µ(E), in other words we prove the

claim. Otherwise, let E be unstable; in particular r ≥ 2. By induction, we can assume

that the statement holds for torsion-free Higgs sheaves of rank at most r − 1. By the

proof of Theorem 1.4.2 we have µ(F) ≤ µ (E1), where E1 is the maximal destabilizing

Higgs subsheaf of E. If µ(F) = µ (E1) then the point in R2 associated to F lies on the

HN-polygon of E since, by the previous reasoning, 0 < rank(F) ≤ rank (E1). From now on,

let µ(F) < µ (E1). Considering the torsion-free Higgs sheaves A = F∩E1 and B = F+E1;

since deg(A) ≤ µ1 rank(A) and deg(A) + deg(B) ≥ deg (E1) + deg(F) we have

deg(B) ≥ µ1(rank (E1)− rank(A)) + µ(F) rank(F).

If rank(A) = rank (E1) then F ⊇ E1 and therefore F/E1 is a Higgs subsheaf of E/E1.

By inductive hypothesis, the point in R2 associated to F/E1 lies either on or below the

HN-polygon of E/E1; in particular the coordinates of this point are the difference of the

coordinates of the points associated to F and E1. In other words, the point associated to

F lies either on or below the HN-polygon of E. If rank(A) < rank (E1) then we have

deg(B) ≥ µ1(rank (E1)− rank(A)) + µ(F) rank(F) > µ(F)(rank (E1)− rank(A) + rank(F))

µ(B) =
deg(B)

rank (E1)− rank(A) + rank(F)
> µ(F).

Since B ⊇ E1, B/E1 is a Higgs subsheaf of E/E1; repeating the previous reasoning, the

point associated toB lies either on or below the HN-polygon of E. Still rank(F) ≤ rank(B),

by inductive hypothesis and the last statement, the point associated to F lies either on or

below the HN-polygon of E. Q.e.d.

1.5 Jordan-Hölder filtrations for Higgs sheaves

Any semistable Higgs sheaf admits a filtration whose successive Higgs quotient sheaves are

stable.

Indeed, let E be a semistable Higgs sheaf. If it is stable then we finish, otherwise there

exists a Higgs subsheaf E1 of E such that µ (E1) = µ(E) and its rank is minimal. The

Higgs sheaf E1 is stable and the quotient E/E1 is semistable. Iterating this process at the

end we obtain a filtration

{0} = E0 ⫋ E1 ⫋ . . . ⫋ Em−1 ⫋ Em = E,
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where the successive Higgs quotient sheaves Ei/Ei−1 are stable for any i ∈ {1, . . . ,m}, and
µ(Ei) = µ(E).

Definition 1.5.1. The previous filtration is called a Jordan-Hölder filtration of E (JH-

filtration, for short).

This JH-filtration of E, while it is not unique, satisfies the following theorems.

Theorem 1.5.2. The JH-filtrations of E have the same length.

Proof. Let E be semistable but not stable, and let

{0} = E1
0 ⫋ E1

1 ⫋ . . . ⫋ E1
m−1 ⫋ E1

t = E (1.4)

{0} = E2
0 ⫋ E2

1 ⫋ . . . ⫋ E2
l−1 ⫋ E2

s = E (1.5)

be two different JH-filtrations of E. By absurd let s > t. Let i be the minimum index

such that E1
1 ⊆ E2

i and E1
1 ⊈ E2

i−1. Then the composed morphism E1
1 ↪→ E2

i → E2
i /E

2
i−1

is non-zero between stable Higgs sheaves of the same slope, by Proposition 1.3.4.e it is an

isomorphism. Hence E2
i = E2

i−1 ⊕ E1
1 and we have the following JH-filtration of E

{0} ⫋ E1
1 ⫋ E2

1 ⊕ E1
1 ⫋ . . . ⫋ E2

i−1 ⊕ E1
1 ⫋ E2

i+1 ⫋ . . . ⫋ E2
l−1 ⫋ E2

l = E. (1.6)

Since this JH-filtration has the first term equal to the first term of the JH-filtration (1.4),

they induce JH-filtrations of E/E1
1, of length s− 1 and t− 1, respectively. Repeating this

reasoning t − 1 times, we find a JH-filtration of E/E2
l−1 of length s − t > 0. This means

that E2
l−1 ⫋ E1

m−1 ⫋ E1
m = E and by hypothesis µ(E/E2

l−1) = µ(E/E1
m−1), i.e. E/E2

l−1

has a proper Higgs subsheaf of the same slope. This contradicts the stability condition of

E/E2
l−1. To avoid all this, we must have s = t. Q.e.d.

Theorem 1.5.3. The graded Higgs sheaves Gr(E) =
s⊕
i=1

Ei/Ei−1 of all JH-filtrations of E

are isomorphic.

Remark 1.5.4. By Definition 1.3.3, Gr(E) is a polystable Higgs sheaf. ♢

Proof. Using the same notation of the JH-filtrations (1.4) and (1.5), let k = s = t. If

k = 1 there is nothing to prove. Let k ≥ 2, then the graded Higgs sheaves associated to

JH-filtrations (1.5) and (1.6) are isomorphic by construction. The JH-filtrations (1.4) and

(1.6) induce JH-filtrations of E/E1
1 of length k − 1; by inductive hypothesis, their graded

Higgs sheaves are isomorphic. We have

Gr
(
E2
s

) ∼= Gr
(
E2
l

) ∼= Gr
(
E2
l /E

1
1

)
⊕ E1

1
∼= Gr

(
E1
t/E

1
1

)
⊕ E1

1
∼= Gr

(
E1
t

)
.

Q.e.d.



Chapter 2

Tensor product of

semistable Higgs bundles

In [2, Section 6] Balaji and Parameswaran, using G.I.T. techniques, have proved that

the tensor product of semistable Higgs bundles over smooth projective curves over K is

semistable as well, also when K has positive characteristic. On the other hand, using

techniques of complex geometry, Simpson has proved the same result on smooth complex

projective varieties ([62, Corollary 3.8]). More in general, with regard to compact Kähler

manifolds, Biswas and Schumacher ([5, Proposition 4.5]) and Holgúın Cardona ([34, The-

orem 5.4]) have proved that the tensor product of semistable Higgs shaves is semistable as

well.

Here we prove a “Lefschetz principle”-type theorem for semistable Higgs sheaves which

allows us to give another proof of the semistability of the tensor products of semistable

Higgs sheaves over smooth projective varieties, defined over an algebraically closed field K
of characteristic 0.

2.1 Projective varieties and base change

We fix the following definitions.

Definition 2.1.1. Let F be a field and let F′ be an its extension field.

a) ([23, Definition at page 551]) We say F′ algebraic separable if it is algebraic and the

minimal polynomial p of any element of F′ is coprime with its derivative Dp.

19
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b) ([1, tag 030E]) A collection of elements {xi}i∈I of F′ is called algebraically independent

over F if the map

F[Xi; i ∈ I] → F′

which maps Xi to xi is injective.

c) ([1, tag 030E]) A transcendence basis of F′ over F is a collection of elements {xi}i∈I
which are algebraically independent over F and such that F′ is an algebraic extension

of F(xi; i ∈ I).

d) ([30, Definition at page 27]) We say F′ is separably generated over F if there exists

a transcendence basis {xi ∈ F′}i∈I such that F′ is an algebraic separable extension of

F(xi; i ∈ I).

e) ([1, tag 030O]) We say F′ separable over F if for any extension F ⊆ F′′ ⊆ F′, with F′′

finitely generated over F, F′′ is separably generated over F.

f) ([1, tag 030Y]) We say F perfect if any its extension is separable.

Remark 2.1.2.

a) Any field extension has a transcendence basis ([23, First Theorem in Section 14.9]).

b) Any separably generated field extension is separable. ([1, tag 030X]).

c) The algebraic extensions of a characteristic 0 field are separable, hence any field of

characteristic 0 is perfect.

d) A field of characteristic 0 is separably closed if and only if it is algebraically closed. ♢

From now on, let X be a smooth projective variety defined over K, an algebraically closed

field of characteristic 0, let F be an extension field of K and let XF = X ×Spec(K) Spec(F).
By [1, tags 01WF and 020J], [31, Proposition III.10.1.(b)] and [7, Lemma 8.3.3.i] XF is an

irreducible smooth projective scheme of finite type over F. Moreover, we have the following

lemma

Lemma 2.1.3. XF is a smooth projective variety.

Proof. X is a reduced scheme i.e. for any open subset U of X, OX(U) is a reduced

K-algebra, by [1, tags 030S and 030V] OX(U) is a geometrically reduced K-algebra. Since

K is a perfect field, then F is a separable extension of K, hence OX(U)⊗K F is a reduced

F-algebra ([1, tag 030U]). Thus, {f−1(U) = Spec (OX(U)⊗K F)}U⊆X open is an affine open

https://stacks.math.columbia.edu/tag/030E
https://stacks.math.columbia.edu/tag/030E
https://stacks.math.columbia.edu/tag/030O
https://stacks.math.columbia.edu/tag/030Y
https://stacks.math.columbia.edu/tag/030X
https://stacks.math.columbia.edu/tag/01WF
https://stacks.math.columbia.edu/tag/020J
https://stacks.math.columbia.edu/tag/030S
https://stacks.math.columbia.edu/tag/030V
https://stacks.math.columbia.edu/tag/030U
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covering ofXF given by reduced subschemes, henceXF is a reduced scheme ([46, Proposition

2.4.2.b]). Here f is defined by the following Cartesian diagram

XF
f //

��

X

��
Spec(F) // Spec(K)

.

We infer that XF is an integral scheme by [30, Proposition II.3.1]. Q.e.d.

Definition 2.1.4 (cfr. [67, Definition 2.4]). A fpqc1 morphism ϕ : S → T of schemes is a

faithfully flat morphism2 for which there exists an affine open covering {Ti}i∈I of T , such
that each Ti is the image of a quasi-compact open subset of S.

Proposition 2.1.5. The canonical morphism f : XF → X is fpqc.

Proof. Since XF is a closed subscheme of PNF ([7, Proposition 7.3.13]) for some N ∈ N≥1,

XF is quasi-compact. Thus we can consider a finite affine open covering {f−1(Ui)}i∈{1,...,m}

of XF, where each Ui is an open subscheme of X. By [7, Proposition 4.4.1.iii and Corol-

lary 7.2.7], f is faithfully flat, f−1(Ui) = Spec (OX(Ui)⊗K F) for any i ∈ {1, . . . ,m}
and these are quasi-compact topological spaces ([30, Exercise II.2.13.b]). In other words

Ui = f (Spec (OX(Ui)⊗K F)) for any i ∈ {1, . . . ,m}, i.e. the claim holds. Q.e.d.

2.2 Higgs sheaves, their semistability and base change

We begin to prove the following lemma.

Lemma 2.2.1. Let E = (E,φ) be a Higgs bundle over X. Then there exist an algebraically

closed subfield K0 of K, a variety XK0 over K0 and a Higgs bundle E0 over XK0, such that

K0 is isomorphic to a subfield of C, the following diagram is Cartesian

X
f //

��

XK0

��
Spec(K) // Spec (K0)

and E = f ∗E0.

1In French, “fidèlement plat et quasi-compact”.
2In other words, f is a surjective flat morphism of schemes ([67, Definition 1.10]).
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Proof. By definition X = Proj

(
K [x0, . . . , xn]

J

)
. To give a Higgs bundle over X is

equivalent to given a triple {Ui, λij, φi}i,j∈I where

� I is a finite set of indexes, because X is quasi-compact as topological space;

� Ui’s are open affine subsets of X which recovers it;

� λij : O⊕r
Uij

→ O⊕r
Uij

’s are the transition functions of E, where Uij = Ui ∩ Uj are affine

open subsets of X;

� φi = φ (Ui) : E (Ui) → (E ⊗OX
Ω1
X) (Ui) = E (Ui) ⊗OX(Ui) Ω

1
X (Ui), this last equality

holds because E and Ω1
X are coherent OX-modules and the Ui’s are open affine subsets

of X.

By [30, Proposition II.5.2.(a)], the morphisms λij’s and φi’s correspond to morphisms λ̃ij’s

and φ̃i’s of opportune coherent modules.

Since all these are modules of finite type over K, we can consider the set S of all coefficient

of the polynomial which generate the ideals of these modules. By Noetherianity of these

modules, S is a finite set and let α1, . . . , αp, τ1, . . . , τq its elements, where each αi is algebraic

on Q and the τj’s are algebraically independent on Q (Definition 2.1.1.b); if one of these

types of elements does not occur we have either p = 0 or q = 0. Let K0 be the algebraically

closure of the field generated by S over Q; K0 is a subfield of C. Indeed, by definition

K0 = Q (Q(α1, . . . , αp)[τ1, . . . , τq])
alg

where Q( ) is the quotient field of . Let t1, . . . , tq ∈ C be transcendental numbers alge-

braically independent on Q, then

K0
∼= Q (Q(α1, . . . , αp)[t1, . . . , tq])

alg
⫋ C.

Let J0 be the ideal of K0 [x0, . . . , xn] generated by the element of J view as elements of this

ring, let XK0 = Proj

(
K0 [x0, . . . , xn]

J0

)
. By construction we have the Cartesian diagram

of the claim.

Using the same reasoning, we define a triple
{
U0
i , λ

0
ij, φ

0
i

}
i,j∈I which determines a Higgs

bundle E0 = (E0, φ0) over XK0 such that f ∗E0 = E. Q.e.d.

We explain all details of the proof of [43, Proposition 1].

From now on, ξ is the generic point of X and let E be a torsion-free coherent sheaf on X.
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Lemma 2.2.2. Let W be a vector subspace of E(ξ) ∼= Eξ. Then there exists a unique

saturated torsion-free coherent subsheaf F of E such that W = F(ξ).

Proof. By Nakayama’s Lemma, there exists aOX,ξ-submoduleWξ of Eξ such thatWξ
∼= W.

As in [43, Proposition 1], we construct a torsion-free sheaf on X as it follows: let U be the

collection of all open subset of X such that E|U is a quotient of a locally free sheaf, this is

a cofinal system to collection Op(X) of all open subsets of X therefore we will compute

the direct limits over U and not over Op(X).

� ∀U ∈ U open, we letW(U) =
(
ρUξ
)−1

(Wξ), where ρ
U
ξ : OX(U)

⊕r → Eξ is the canonical
morphism;

� ∀x ∈ X, we let Wx = lim−−→
x∈U

W(U);

� ∀x ∈ X, Fx = Ex ∩Wx.

Let Bξ =
{
eξ1, . . . , e

ξ
m

}
be a basis of Wξ. By construction, for any U ⊆ X open,

S(U) =
(
ρUξ
)−1

(Bξ) is a system of generators of W(U). Passing to inductive limit, we

obtain a system of generators Sx of Wx for any x ∈ X, hence we get a system of generators

S(x) of W(x) = Wx ⊗OX,x
κ(x). Using the elements of S(x) we construct a finite basis

B(x) =
{
e1(x), . . . , emx

(x)
}
of F(x) = Fx ⊗OX,x

κ(x). By Nakayama’s Lemma, B(x) gives
rise to a finite system of generators Bx of Fx. Using the Geometric Version of Nakayama’s

Lemma, for any x ∈ X there exists U ⊆ X open and affine such that x ∈ U and F(U) is

an OX(U)-submodule of finite type of E(U). Since the OX(U)’s are Noetherian modules,

then F(U) are coherent OX(U)-modules, i.e. F is a coherent torsion-free OX-submodule

of E .

Let F ′ another coherent torsion-free OX-submodule of E such that F ′
ξ = Wξ. By the

previous construction

∀x ∈ X, F ′
x ⊆ Fx

i.e. F ′ ⊆ F . Consider the following diagram

0 // F // E // Q = coker(F → E) // 0

0 // F ′ //
?�

i

OO

E // Q′ = coker (F ′ → E) //

q

OO

0

,

it follows from the proof of [43, Proposition 1] that Q and Q′ are coherent torsion-free

OX-modules. By the universal property of cokernels of morphisms, there exists a unique
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morphism q : Q′ → Q which makes commutative the diagram. By the Four Lemma q

is an epimorphism. Since q(ξ) : Q′(ξ) → Q(ξ) is an isomorphism of κ(ξ)-vector spaces,

by Nakayama’s Lemma qξ is an isomorphism of OX,ξ-modules, and this implies that

ker(q)ξ = {0}, i.e. ker(q) is a torsion subsheaf of Q′. This is possible if and only if

ker(q) = 0X hence Q′ ∼= Q. Thus F ′ = F . Q.e.d.

Lemma 2.2.3. Let E = (E , φ) be a Higgs sheaf on X. Consider the following Cartesian

diagram

XF
f //

��

X

��
Spec(F) // Spec(K)

.

If F is a subsheaf of E such that
(
f ∗F , f ∗φ|f∗F

)
is a Higgs subsheaf of f ∗E, then

(
F , φ|F

)
is a Higgs subsheaf of E.

On f ∗E one defines the following Higgs field

f ∗E
f∗φ−−→ f ∗E⊗OXF

f ∗Ω1
X

Id⊗f∗−−−→ f ∗E⊗OXF
Ω1
XF

which is denoted, by abuse of notation, as f ∗φ.

Proof. Recall that

∀y ∈ XF, (f
∗F)y = Fx ⊗OX,x

OXF,y,
(
f ∗Ω1

X

)
y
= Ω1

X,x ⊗OX,x
OXF,y

where x = f(y), one has

∀y ∈ XF, (f
∗F) (y) ∼= Fx ⊗OX,x

κ(y),
(
f ∗Ω1

X

)
(y) ∼= Ω1

X,x ⊗OX,x
κ(y).

Let {si,x ∈ Fx}i∈Ix be a system of generators of Fx and let
{
ej,x ∈ Ω1

X,x

}
j∈Jx

be a ba-

sis of Ω1
X,x. Then

{
f ∗
xsi,x ⊗ f ∗ej,x ∈ f ∗Fy ⊗OXF,y

Ω1
XF,y

}
i∈Ix
j∈Jx

is a system of generators of

(f ∗φy) (f
∗Fy); however

{
f ∗
xsi,x ⊗ f ∗ej,x ∈ f ∗Fy ⊗OXF,y

f ∗Ω1
X,x

}
i∈Ix
j∈Jx

is also a system of gen-

erators of f ∗Fy⊗OXF,y
f ∗Ω1

X,x, thus Im
(
f ∗φ|f∗F

)
⊆ f ∗ (F ⊗OX

Ω1
X) up to isomorphisms; in

other words, f ∗φ|f∗F factorizes through the morphism ψ : f ∗F → f ∗ (F ⊗OX
Ω1
X). Since

by Proposition 2.1.5 f : XF → X is a fpqc morphism, let {Ui}i∈{1,...,m} be a finite affine open

covering ofX, this defines descent data ([1, tag 023B])
{
f ∗F|f−1(Ui), Idf∗F|f−1(Ui∩Uj)

}
i,j∈{1,...,m}

and

{
f ∗ (F ⊗OX

Ω1
X)|f−1(Ui)

, Idf∗(F⊗OX
Ω1

X)|f−1(Ui∩Uj)

}
i,j∈{1,...,m}

and ψ is a morphism of de-

scent data ([1, tag 023B]). By [1, tag 023T] there exists a unique morphism of sheaves

https://stacks.math.columbia.edu/tag/023B
https://stacks.math.columbia.edu/tag/023B
https://stacks.math.columbia.edu/tag/023T
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χ : F → F ⊗OX
Ω1
X whose lift via f is ψ, by the previous construction φ|F lifts to ψ hence

φ|F = χ that is the claim holds. Q.e.d.

The following lemma extends [43, Proposition 3] to the Higgs bundles setting.

Lemma 2.2.4. Let E = (E,φ) a torsion-free Higgs sheaf over (X,H) and let F be an

extension of K. Consider the following Cartesian diagram

XF
f //

��

X

��
Spec(F) // Spec(K)

then f ∗E = (f ∗E, f ∗φ) is a semistable Higgs sheaf if and only if E = (E,φ) is semistable.

Proof. By base change f ∗H is a polarization of XF ([27, Proposition 4.6.13.iii]). As

usual, for any torsion-free subsheaf F of f ∗E, we set µ (F) =
c1(F) · (f ∗H)N−1

rank(F)
with

dim (XF) = N .

If E is unstable then there exists a torsion-free Higgs subsheaf F of E such that µ(F) > µ(E),

and without loss of generality, we can assume that F is reflexive. Since f is a flat mor-

phism ([30, Proposition II.9.2.b]) then f ∗F is also reflexive ([31, Proposition 1.8]) hence

µ (f ∗F) > µ (f ∗E) i.e. f ∗E is unstable.

If f ∗E is unstable then there exists a saturated torsion-free Higgs subsheaf F =
(
F , f ∗φ|F

)
such that µ(F) > µ (f ∗E). Let ξ be the generic point of XF, since

κ(ξ)⊗K F = OX,ξ ⊗K F ∼= OXF,ξ
= κ

(
ξ
)
.

Therefore up to isomorphism F
(
ξ
)
⊆ E

(
ξ
)
= E(ξ)⊗K F. Let {b1, . . . , bs} be a basis of

F
(
ξ
)
, we can write

∀i ∈ {1, . . . , s}, bi =
r∑
j=1

ajiej

where aji ∈ F, ajiej is a
j
i ⊗ ej and {e1, . . . , er} is a basis of E(ξ). Let F0 be the extension

of K generated by the aji ’s and let XF0 = X ×Spec(K) Spec (F0); then {b1, . . . , bs} spans a

vector subspace F0 (ξ0) ⊆ E(ξ)⊗κ(ξ) κ (ξ0), where ξ0 is the generic point of XF0 . Consider

the following commutative diagram

XF

f

**
g1

//

��

XF0 g2
//

��

X

��
Spec(F) // Spec (F0) // Spec(K)
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since

a) by Lemma 2.2.2 there exists a unique saturated torsion-free coherent subsheaf F0 of

g∗2E whose generic fibre is F0 (ξ0),

b) g∗1F0 = F and µ (F0) = µ(F) > µ (f ∗E) = µ (g∗2E),

c) by the previous point and by Lemma 2.2.3
(
F0, g

∗
2φ|F0

)
is a torsion-free Higgs subsheaf

of g∗2E,

we are reduced to proving the assert when F is a finitely generated extension of K. Let

{α1, . . . , αp, τ1, . . . , τq ∈ F0} ⊆
{
aji ∈ F0

}
a subset which is maximal algebraically indepen-

dent; we can consider the chain of fields extension

K ⊆ K0 = K (α1 . . . , αp) ⊆ K1 ⊆ . . . ⊆ Kq−1 ⊆ F0

such that

� K0 is an algebraic extension of K of finite degree,

� degtrKh−1
Kh = 1 for any h ∈ {1, . . . , q}, where we set Kh = K0 (τ1, . . . , τh) and

Kq = F0.

By all this, the morphism g2 can be split as following

Xq

g2

--
hq

//

��

Xq−1 hq1

//

��

. . .
h1

// X0 h0
//

��

XK

��
Spec (Kq) // Spec (Kq−1) // . . . // Spec (K0) // Spec(K)

where for any h ∈ {1, . . . , q}, Xh = XK ×Spec(K) Spec (Kh). Let Gq be the group of

(Kq−1 (ξ1))-automorphism of Kq (ξ0) generated by translation τq 7→ τq + v with v ∈ Kq−1,

with ξ1 the generic point of XKq−1 . Each σq ∈ Gq induces an automorphism σ̃q of Xq over

Xq−1 such that σ̃q
∗F0 (ξ0) = F0 (ξ0) i.e. σ̃q

∗F0 = F0 (Lemma 2.2.2). By [43, Lemma at

page 98] and by [8, Theorem II.8.1.i] F0 (ξ0) is a Kq−1 (ξ1)-vector space i.e. there exists a

vector subspace W of E⊗KKq−1 such that W⊗Kq−1(ξ1)Kq (ξ0) = F0 (ξ0). Thus there exists

a torsion-free coherent subsheaf F1 of (hq−1 ◦ . . . ◦ h0)∗E such that h∗qF1 = F0 (Lemma

2.2.2). Iterating this reasoning (q−1)-times, we determine a torsion-free coherent subsheaf

Fq of h∗0E such that (hq ◦ . . . ◦ h1)∗Fq = F0. Let G0 be the Galois group of K0 over K,

again each σ0 ∈ G0 induces an automorphism σ̃0 of X0 over X such σ̃∗
0Fq = Fq. By [24,
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Theorem 9.28] there exists a subsheaf F̃ of E such that h∗0F̃ = Fq, hence g
∗
2F̃ = F0. By

Lemma 2.2.3 F̃ is a torsion-free Higgs subsheaf of E such that

µ
(
F̃
)
= µ (F0) > µ (g∗2E) = µ(E)

so that E is an unstable Higgs sheaf. Q.e.d.

Theorem 2.2.5. Let E1 and E2 be torsion-free Higgs sheaves over (X,H). If both are

H-semistable then (E1 ⊗ E2) /torsion is H-semistable too.

Proof. Repeating the proof of Lemma 2.2.1, there exist an algebraically closed subfield

K0 of K, a variety XK0 over K0, a line bundle H0 over XK0 and Higgs bundles F0,h over

XK0 , such that the following diagram is Cartesian

X
f0 //

��

XK0

��
Spec(K) // Spec (K0)

,

f ∗
0H0 = H and E0,h = f ∗

0F0,h, where h ∈ {1, 2}. Moreover, by Proposition 2.1.5 and [1,

tag 0D2P] H0 is a polarization of XK0 . Since K0 is a subfield of C, up to isomorphism, we

change the base of XK0 and have the following Cartesian diagram

XC = XK0 ×Spec(K0) Spec(C)
f //

��

XK0

��
Spec(C) // Spec (K0)

.

By the previous lemma, f ∗E0,1 and f ∗E0,2 are f ∗H0-semistable Higgs bundles over XC

hence (f ∗E0,1 ⊗ f ∗E0,2) /torsion = f ∗ ((E0,1 ⊗ E0,2) /torsion) is f ∗H0-semistable as well

([5, Proposition 4.5] or [34, Theorem 5.4] equivalently). Again, by the previous lemma

(E0,1 ⊗ E0,2) /torsion isH0-semistable hence (E1 ⊗ E2) /torsion = f ∗ ((E0,1 ⊗ E0,2) /torsion)

is H-semistable too. Q.e.d.

2.3 Properties of Harder-Narasimhan filtration

of Higgs sheaves, Part II

Applying the previous theorem we can prove other two results on semistable torsion-free

Higgs sheaves, thus the title of this section.

https://stacks.math.columbia.edu/tag/0D2P
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The first lemma uses the notion of maximal destabilizing Higgs subsheaf and it relates the

semistability of torsion-free Higgs sheaves to particular Higgs sheaves.

Lemma 2.3.1. Let E be a torsion-free Higgs sheaf on X. The Higgs sheaf

End(E) = (E⊗ E∨) /torsion is semistable if and only if E is semistable.

Proof. Let E be semistable. By Lemma 1.2.9 and by Theorem 2.2.5 End(E) is semistable.

Vice versa, let End(E) be semistable and let E be unstable. By Lemma 1.2.9 also E∨ is

unstable. Let E1 and E1∨ be the maximal destabilizing Higgs subsheaves of E and E∨,

respectively. By hypothesis

µ(E1) > µ(E), µ (E1∨) > µ (E∨) ,

µ(E1 ⊗ E1∨) =
rank(E1∨) deg(E1) + rank(E1) deg(E1∨)

rank(E1) rank(E1∨)
= µ(E1) + µ(E1∨) >

> µ(E) + µ (E∨) = µ(End(E)) = 0

i.e. E1 ⊗ E1∨ is a Higgs subsheaf which destabilizes End(E) in contradiction with the

assumption. From all this we have the claim. Q.e.d.

The next proposition complete the list given by Proposition 1.4.6.

Proposition 2.3.2. Let E1 and E2 be torsion-free Higgs sheaves over X.

µmin(E1 ⊗ E2) = µmin(E1) + µmin(E2), µmax(E1 ⊗ E2) = µmax(E1) + µmax(E2).

Proof. Since:

µ(E1,1 ⊗ E2,1) =
rank(E2,1) deg(E1,1) + rank(E1,1) deg(E2,1)

rank(E1,1) rank(E2,1)
= µ(E1,1) + µ(E2,1)

by the proof of Theorem 1.4.2, µmax(E1 ⊗ E2) ≥ µmax(E1) + µmax(E2). On the other hand,

by Theorem 2.2.5 E1,1 ⊗ E2,1 is a semistable Higgs subsheaf of E1 ⊗ E2 and therefore

µmax(E1 ⊗ E2) = µmax(E1) + µmax(E2). Analogously, we prove the other equality. Q.e.d.



Chapter 3

On H-ample, H-nef and H-nflat

Higgs bundles

The contents of this chapter are mainly based on the papers [9] and [10] written in collab-

oration with Ugo Bruzzo and Beatriz Graña Otero, unless otherwise indicated.

3.1 Higgs-Grassmann schemes

Let E = (E,φ) be a rank r ≥ 2 Higgs bundle over a smooth irreducible projective variety

X of dimension n, and let s ∈ {1, . . . , r−1} be an integer number. Let ps : Grs(E) → X be

the Grassmann bundle parametrizing rank s locally free quotients of E (see [25]). Consider

the short exact sequence of vector bundles over Grs(E)

0 // Sr−s,E
η // p∗sE

ϵ // Qs,E
// 0 , (3.1)

where Sr−s,E is the universal rank r−s subbundle and Qs,E is the universal rank s quotient

bundle of p∗sE, respectively.

These Grassmann bundles enjoy the following universal property.

Theorem 3.1.1 (Universal Property of Grassmann Bundle). Let Y be a scheme

over Spec(K), let f : Y → X be a morphism and let Q be a rank s quotient bundle of f ∗E.

Then there exists a unique morphism g : Y → Grs(E) such that Q = g∗Qs,E and f = ps ◦g.

For s = 1 theorem is [30, Proposition II.7.12] and for any s is [40, Proposition 1.2].

With the aim to extend these properties to Higgs bundles, Bruzzo and Hernández Ruipérez

have introduced in [15] closed subschemes Grs(E) ⊆ Grs(E) (the s-th Higgs-Grassmann

29
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schemes of E) which parametrize the rank s Higgs quotient bundles of E. These schemes

are defined as the zero loci of the composite morphisms

(ϵ⊗ Id) ◦ ψ ◦ η : Sr−s,E → Qs,E ⊗ p∗sΩ
1
X

where ψ : p∗sE → p∗sE ⊗ p∗sΩ
1
X is the pullback of the morphism φ via ps.

Theorem 3.1.2. The restriction of the sequence (3.1) to Grs(E) yields a universal short

exact sequence

0 // Sr−s,E
η // ρ∗sE

ϵ // Qs,E
// 0,

where Qs,E = Qs,E|Grs(E) is equipped with the quotient Higgs field induced by ρ∗sφ (here

ρs = ps|Grs(E) : Grs(E) → X).

Proof. Let us consider

0 // Sr−s,E
η // p∗sE

ϵ //

ψ
��

Qs,E
// 0

0 // Sr−s,E ⊗ p∗sΩ
1
X η⊗Id

// p∗sE ⊗ p∗sΩ
1
X ϵ⊗Id

// Qs,E ⊗ p∗sΩ
1
X

// 0

.

By construction ker(ϵ ⊗ Id) = Sr−s,E ⊗ p∗sΩ
1
X , then by the couniversal property of the

kernel there exists a unique morphism ψ0 : Sr−s,E|Grs(E) → (Sr−s,E ⊗ p∗sΩ
1
X)|Grs(E)

ofOGrs(E)-

modules which makes the diagram commutative. So that Sr−s,E|Grs(E) = Sr−s,E is a Higgs

subbundle of ρ∗sE and therefore Qs,E is the corresponding Higgs quotient bundle. Q.e.d.

Also the Higgs-Grassmann schemes enjoy a universal property similar to that of the Grass-

mann bundles.

Theorem 3.1.3 (Universal Property of Higgs-Grassmann schemes). Let Y be a

scheme, let f : Y → X be a morphism and let Q be a rank s Higgs quotient bundle of f ∗E.

Then there exists a unique morphism g : Y → Grs(E) such that Q = g∗Qs,E and f = ps ◦g.

Proof. Let Q = (Q, φ̃) be a rank s Higgs quotient bundle of f ∗E; by the universal property

of the Grassmann bundles, there exists a unique morphism g : Y → Grs(E) such that

g∗Qs,E = Q and f = ps ◦ g. Thus

g∗Sr−s,E
g∗η //

��

f ∗E
g∗ϵ //

g∗ψ
��

g∗Qs,E
//

��

0

g∗Sr−s,E ⊗ f ∗Ω1
X g∗η⊗Id

// f ∗E ⊗ f ∗Ω1
X g∗ϵ⊗Id

// g∗Qs,E ⊗ f ∗Ω1
X

// 0

is a commutative diagram, hence g∗ ((ϵ⊗ Id) ◦ ψ ◦ η) = 0. This is possible if and only

if g takes values in Grs(E), or equivalently if and only if Q = g∗Qs,E|Grs(E), which is the

claim. Q.e.d.
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3.1.1 On the first Higgs-Grassmann scheme

In principle, Grs(E) could be empty. On the other hand, if Grs(E) is not empty then it

may be neither smooth, nor reduced, nor equidimensional, nor irreducible. In this thesis,

we prove the existence of an irreducible component Z of Gr1(E) which surjects onto X

when rank(E) ∈ {2, 3}. This last condition is satisfied at least in the following cases:

� rank(E) = 2 and K = C, by [14, Corollary 4.3];

� E has a Higgs quotient line bundle, i.e. ρ1 : Gr1(E) → X has a section.

In the following, we propose another proof of [14, Corollary 4.3] which works furthermore

on any algebraically closed field of characteristic 0.

Proposition 3.1.4. Let E be a rank 2 Higgs bundle. Gr1(E) contains a projective variety

which surjects onto X.

Proof. By [15, Subsection 3.2], Gr1(E) is pointwise the intersection of n

(
2

2

)
= n hy-

perquadrics in Gr1(E); hence if n = 1 then Gr1(E) contains an irreducible component of

dimension at least 1 which surjects onto X.

Let n ≥ 2 and let L be an ample line bundle over X. There exists m ≥ 1 such that a basis

of H0 (X,mL) defines a closed embeddings of X in PN for some N ≥ 1. Let x ∈ X be

a closed point. By Bertini’s Theorem (cfr. [30, Corollary III.10.9 and Exercise III.11.3]),

there exist ample smooth divisors D1, . . . , Dn−1 ∈ |mL| such that C = D1 ∩ . . . ∩Dn−1 is

a smooth projective curve in X and x ∈ C. By the previous step, we find an irreducible

component Y of Gr1
(
E|C
)
of dimension at least 1. Let us consider the resolution

(
Ỹred, β

)
of Yred

1 (see [32, Main Theorem I]), it contains a smooth projective curve. Consider the

following commutative diagram

Ỹred
β //

f

++

Yred
� � // Y �

� // Gr1
(
E|C
)

ρ1|C

��

� � // Gr1(E)

ρ1

��
C �
� // X,

by construction f ∗E has a locally free rank 1 Higgs quotient sheaf. By the universal pro-

perty of Gr1(E), there exists a unique morphism ψf : Ỹred → Gr1(E) such that f = ρ1 ◦ ψf ,
where ρ1 : Gr1(E) → X has been defined above. Since f

(
Ỹred

)
= C then Gr1(E) contains

at least an irreducible curve which surjects onto C. In other words, for any closed point

1Since Yred is a reduced irreducible closed subscheme of a projective scheme, it is a projective variety.



32 H-ample Higgs bundles

x ∈ X, Gr1(E) contains a curve which image via ρ1 contains x. Thus Gr1(E) surjects onto

X, this is possible if and only if Gr1(E) has an irreducible component Z of dimension at

least n; in particular Zred is a projective variety which surjects onto X. Q.e.d.

Following the same idea, we prove the next proposition which is analogous to the previous

one and it works for the rank 3 case.

Proposition 3.1.5. Let E be a rank 3 Higgs bundle. Then Gr1(E) contains a projective

variety Z which surjects onto X.

Proof. By [15, Subsection 3.2], Gr1(E) is locally the intersection of n

(
3

2

)
= 3n hyper-

quadrics in Gr1(E). Analysing the ideal of this intersection in Macaulay2, one proves that

this has coheight at least 1; i.e. Gr1(E) has a 1-dimensional irreducible component Z which

surjects onto C, and Zred a projective subvariety.

Let n ≥ 2. One repeats the same reasoning of the previous proposition and concludes. Q.e.d.

3.2 H-ample Higgs bundles

We start this section recalling the definition of H-ample Higgs bundle given in [11]. We

require the ampleness of the determinant line bundle and recursively the H-ampleness of

all universal Higgs quotient bundles.

Definition 3.2.1 (see [11, Definition 2.3]). A Higgs bundle E = (E,φ) of rank one is said

to be Higgs-ample (H-ample, for short) if E is ample in the usual sense. If rank(E) ≥ 2,

we inductively define H-ampleness by requiring that

a) all Higgs bundles Qs,E are H-ample for all s, and

b) the determinant line bundle det(E) is ample.

The condition on the determinant cannot be omitted. In order to prove this statement via

an example we start by proving the following proposition.

Proposition 3.2.2 (cfr. [15, Proposition 3.7]). Let E = (E = L1⊕L2, φ) be a rank 2 nilpo-

tent2 Higgs bundle over (X,H) where H is a polarization of X, such that φ(L1) ⊆ L2 ⊗ Ω1
X

and φ(L2) = 0. Then

2A Higgs bundle is nilpotent if there is a decomposition E =

m⊕
i=1

Ei as direct sum of subbundles such

that φ(Ei) ⊆ Ei+1 ⊗ Ω1
X for i ∈ {1, . . . ,m− 1} and φ(Em) = 0 (see [15]).
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a) φ =

(
0 0

c 0

)
̸= 0 only if deg (L1) ≤ deg (L2)+µ (Ω

1
X), where c ∈ HomOX

(L1, L2 ⊗ Ω1
X)

is a monomorphism;

b) Gr1(E) coincides with Gr1 (L1).

Proof. For our aims we assume φ ̸= 0. Let

φ =

(
a b

c d

)
where

a ∈ HomOX

(
L1, L1 ⊗ Ω1

X

)
, b ∈ HomOX

(
L2, L1 ⊗ Ω1

X

)
,

c ∈ HomOX

(
L1, L2 ⊗ Ω1

X

)
, d ∈ HomOX

(
L2, L2 ⊗ Ω1

X

)
;

by hypothesis, one has a = 0, b = 0, d = 0. Trivially
(
L2, φ|L2 = 0

)
is a Higgs subbundle

of E and therefore L1 = (L1, φ̃) is a Higgs quotient bundle of E.

Let K =
(
K, φ|K

)
be a Higgs subsheaf of E such that the corresponding Higgs quotient

sheaf Q0 = (Q0, φ̃0) is locally free and has rank 1. Thus K is a locally free sheaf, because

kernel of an epimorphism of locally free sheaves on a Noetherian scheme. By hypothesis

K = (K ∩ L1) ⊕ (K ∩ L2) ≡ K1 ⊕ K2, hence φ (K2) = 0 and φ (K1) ⊆ K2 ⊗ Ω1
X , where K1

and K2 are the underlying coherent sheaves to K1 and K2, respectively.

One has two possibilities:

1) K1(ξ) = 0 i.e. K1 is a torsion sheaf, hence K1 = 0X because L1 is torsion-free. It follows

that rank (K2) = 2 and repeating the reasoning of Lemma 2.2.2 one has K2 = L2.

2) K1(ξ) ̸= 0 i.e. K1 is torsion-free then K1 = L1. In this case it has to be rank (K2) = 0,

hence by the same reasoning K2 = 0X . This force φ to be zero and this is impossible

because we are supposing the contrary.

From all this, (L1, 0) is the only Higgs quotient bundle of E and the claim follows. Q.e.d.

Here we are in position to give an example of negative degree Higgs bundle whose first

universal Higgs quotient bundle is ample.

Example 3.2.3 (cfr. [11, Example 2.5]). Let X be a smooth projective curve of genus

g ≥ 2, and let E = (E = L1 ⊕ L2, φ) be a rank 2 nilpotent Higgs bundle over X such

that φ(L1) ⊆ L2 ⊗ Ω1
X and φ(L2) = 0. By the previous proposition, E has only a Higgs

quotient bundles which is (L1, 0). If we take deg(L1) = 1 and deg(L2) = −2, then E is a

Higgs bundle such that deg(E) = −1 and Q1,E is an ample line bundle. △
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Remark 3.2.4.

a) Definition 3.2.1 implies that ∀k ∈ {1, . . . , n},
∫
X

c1(E)
k · Hn−k > 0, where H is a

polarization of X. Moreover if E = (E,φ), with E ample in the usual sense, then E is

H-ample. If φ = 0, the Higgs bundle E = (E, 0) is H-ample if and only if E is ample in

the usual sense.

b) The recursive condition definition of H-ampleness can be recast as follows.

Let 1 ≤ s1 < s2 < . . . < sk < r and let Q(s1,··· ,sk),E be the rank s1 universal Higgs

quotient bundle over Grs1
(
Q(s2,...,sk),E

)
, obtained by taking the successive universal

Higgs quotient bundles of E of rank sk, then sk−1, all the way to rank s1. The H-

ampleness condition for E is equivalent to requiring that all line bundles det(E) and

det
(
Q(s1,··· ,sk),E

)
are ample. ♢

We prove now some properties of H-ample Higgs bundles which will be useful in the sequel.

These extend the properties given in [11] and the Barton-Kleiman Criterion for Ampleness

([45, Proposition 6.1.18.(ii)]) to the Higgs bundles framework.

Proposition 3.2.5.

a) Let f : Y → X be a finite morphism of smooth projective varieties. If E is H-ample

then f ∗E is H-ample. Moreover, if f is also surjective and f ∗E is H-ample then E is

H-ample.

b) Let E be H-ample then every quotient Higgs bundle of E is H-ample.

Proof. (a). (cfr. [11, Proof of Proposition 2.6.(ii)]) In the rank one case, we apply [45,

Proposition 1.2.13 and Corollary 1.2.28]. In the higher rank case, we first note that the

condition on the determinant is fulfilled because f ∗ det(E) = det(f ∗E). By the functori-

ality of Higgs-Grassmann schemes, f induces finite morphisms f s : Grs (f
∗E) → Grs(E)

for all s ∈ {1, . . . , r − 1} such that Qs,f∗E = f
∗
Qs,E. By induction on the rank of E, we

conclude.

(b). Let Q be a rank s Higgs quotient bundle of E; by the universal property of Grs(E)

there exists a section σ : X → Grs(E) such that Q = σ∗Qs,E. Then σ(X) = Y is a

n-dimensional smooth projective subvariety of Grs(E); ρ|Y is an isomorphism with inverse

σ, hence Q = σ∗Qs,E and by the previous part, Q is H-ample. Q.e.d.
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3.2.1 Some criteria for H-ampleness and some applications

Whenever we consider a morphism f : C → X, we understand that C is an irreducible

smooth projective curve.

As in the setting of ordinary vector bundles, the H-ampleness of a Higgs bundle can be

tested by pulling-back to irreducible smooth projective curves.

Theorem 3.2.6. Let E = (E,φ) be a Higgs bundle on X. Fix an ample class h ∈ N1(X).

Then E is H-ample if and only if

a) the line bundle det(E) is ample;

b) there exists δ ∈ R>0 such that for every finite morphism f : C → X, the inequality

µmin (f
∗E) ≥ δ

∫
C

f ∗h (3.2)

holds, where µmin (f
∗E) is defined via the relevant HN-filtration (1.3).

Proof. Let us assume that det(E) is ample and condition (3.2) holds. The H-ampleness

of E is equivalent to the ampleness of a collection of line bundles LS, each on an iterated

Higgs-Grassmann schemes (see Remark 3.2.4.b), that we denote generically by S, with

projection πS : S → X. Let qS : π
∗
SE → LS be the quotient morphism, let g : C → S be a

finite morphism, and let f = πS ◦g. We have a Higgs quotient f ∗E → Q, where Q = g∗LS.

By Proposition 1.4.6.b we have

deg g∗LS = degQ ≥ µmin(f
∗E) ≥ δ

∫
C

f ∗h,

so that by [45, Corollary 1.4.11] LS is ample. As a consequence, E is H-ample.

To prove the opposite implication, note that since E is H-ample, the determinant det(E) is

ample, and the class c1(E) is ample as well. Let f : C → X be a morphism. We have two

cases, according to whether the Higgs bundle f ∗E is semistable or not. Let us start with

the first case. By [45, Corollary 1.4.11], there exists ϵ ∈ R>0 such that for every irreducible

projective curve C in X we have ∫
C

c1(E) ≥ ϵ

∫
C

h.

Then

µmin(f
∗E) = µ (f ∗E) =

1

r

∫
C

f ∗c1(E) =
1

r

∫
C

c1(E) ≥
ϵ

r

∫
C

h = δ

∫
C

f ∗h,
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where C is the image of C in X, and δ =
ϵ

r
. In the second case, recall the HN-filtration of

f ∗E

0 ⫋ E1 ⫋ . . . ⫋ Em−1 ⫋ Em = f ∗E.

By the universality of the Higgs-Grassmann schemes there is a lift fs : C → Grs(E) of f

such that Em/Em−1 = f ∗
sQs,E, where s = rank (Em/Em−1). Therefore,

µmin(f
∗E) =

1

s

∫
C

f ∗
s (c1(Qs,E)).

Since Qs,E is H-ample, by [45, Corollary 1.4.11] there exists η ∈ R>0 such that the class

c1(Qs,E)− ηρ∗sh

is ample for all possible values of s, so that

1

s

∫
C

f ∗
s (c1(Qs,E)) ≥ δ

∫
C

f ∗h,

where δ =
η

r − 1
, thus proving the claim. Q.e.d.

Remark 3.2.7. To be clear, the “if part” of the previous theorem cannot be tested con-

sidering only the curves in X, i.e. considering only the closed embeddings C ↪→ X. This

holds because the ampleness of det
(
Q(s1,··· ,sk),E

)
’s (cfr. Remark 3.2.4.b) have to be tested

on all curves in Grs1
(
Q(s2,...,sk),E

)
. ♢

Corollary 3.2.8 (Barton-Kleiman-type criterion for H-ampleness). Let E = (E,φ)

be a Higgs bundle on X. Fix an ample class h ∈ N1(X). Then E is H-ample if and only if

a) the line bundle det(E) is ample;

b) there exists δ ∈ R>0 such that for every finite morphism f : C → X, and for every Higgs

quotient bundle Q of f ∗E, the inequality

deg(Q) ≥ δ

∫
C

f ∗h

holds.

Proof. If E is H-ample, by the previous theorem there exists δ ∈ R>0 such that

deg(Q) = sµ(Q) ≥ sµmin (f
∗E) ≥ sδ

∫
C

f ∗h ≥ δ

∫
C

f ∗h

(here s = rank(Q)).
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Conversely, let us assume that E satisfies the conditions (a) and (b); let us call ϵ the

constant. In particular, we can take for Q the quotient Em/Em−1 of the HN-filtration of

f ∗E, so that

µmin (f
∗E) =

deg(Em/Em−1)

s
≥ ϵ

s

∫
C

f ∗h ≥ δ

∫
C

f ∗h

where δ =
ϵ

r
. Therefore, E is H-ample. Q.e.d.

Example 3.2.9. Let X be an irreducible smooth projective curve of genus g, and let

E = (L1 ⊕ L2, φ) be the nilpotent Higgs bundle described in the Example 3.2.3. Let d1

and d2 be the degree of L1 and L2, respectively; we assume that d1 ≤ 2g − 2 + d2. Let

d1 + d2 > 0 so that det(E) is ample. Then E is H-ample if and only if deg(L1) = d1 > 0.

Indeed, fix an ample divisor h on X, then

deg(L1) ≥ δ deg(h) (3.3)

choosing 0 < δ ≤ d1
deg(h)

. Now if f : C → X is a finite morphism, according to Proposition

3.2.2.b, f ∗E has an only one rank 1 Higgs quotient bundles which is Q1 = f ∗L1 with zero

Higgs field. Now, Inequality (3.3) implies

deg(Q1) ≥ δ

∫
C

f ∗h

so that E is H-ample whenever d1 > 0. On the other hand, if E is H-ample, then L1 is

ample by Proposition 3.2.5.b i.e. d1 > 0.

If g ≥ 2 one can arrange d1 > 0, d2 ≤ 0 so that E is not ample as an ordinary bundle (for

instance, with g = 2 we take d1 = 1 and d2 = 0). △

3.2.2 Applications of the H-ampleness criterion

Corollary 3.2.8 permits one to reduce the study of H-ample Higgs bundles to their finite

pullbacks over irreducible smooth projective curves. This allows us to prove that the

category of H-ample Higgs bundles is closed under extensions and tensor products.

Theorem 3.2.10. Let 0 → E1 → E → E2 → 0 be a short exact sequence of Higgs bundles

over X with E1 = (E1, φ1) and E2 = (E2, φ2) H-ample. Then E is H-ample.

Proof. Since

det(E) ∼= det(E1)⊗ det(E2),
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by hypothesis and [45, Corollary 6.1.16.(i)] it is an ample line bundle. Let f : C → X

be a morphism and let Q be a Higgs quotient bundle of f ∗E. Let f : C → X be a finite

morphism and let Q be a quotient Higgs bundle of f ∗E. We can form the following diagram

with exact rows and columns:

0 // f ∗E1
//

��

f ∗E //

��

f ∗E2
//

��

0

0 // Q1
//

��

Q

��

// Q2

��

// 0

0 0 0

Let Q2 be Q2 modulo its torsion, and let h ∈ N1(X) be an ample class. By Corollary 3.2.8

there exist δ1, δ2 ∈ R>0 such that

deg (Q1) ≥ δ1

∫
C

f ∗h, deg (Q2) ≥ deg
(
Q2

)
≥ δ2

∫
C

f ∗h.

By letting δ = δ1 + δ2 we have deg(Q) ≥ δ

∫
C

f ∗h. Again by Corollary 3.2.8, E is H-

ample. Q.e.d.

So we have proved also the following corollary.

Corollary 3.2.11. Let E1 = (E1, φ1) and E2 = (E2, φ2) be H-ample Higgs bundles over

X. Then E = E1 ⊕ E2 is H-ample.

Theorem 3.2.12. Let E1 = (E1, φ1) and E2 = (E2, φ2) be H-ample Higgs bundles over X.

Then E1 ⊗ E2 is H-ample.

Proof. Fix an ample class h ∈ N1(X). By Theorem 3.2.6 there exists δ1, δ2 ∈ R>0 such

that for every finite morphism f : C → X, the inequalities

µmin (f
∗E1) ≥ δ1

∫
C

f ∗h, µmin (f
∗E2) ≥ δ2

∫
C

f ∗h

hold. Letting δ = δ1 + δ2, by Proposition 2.3.2 we obtain

µmin (f
∗(E1 ⊗ E2)) = µmin (f

∗E1) + µmin (f
∗E2) ≥ δ1

∫
C

f ∗h+ δ2

∫
C

f ∗h = δ

∫
C

f ∗h.

Q.e.d.

By Theorem 3.2.12 and Proposition 3.2.5.b we can prove the following corollary.
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Corollary 3.2.13. Let E be H-ample. Then for any p ∈ {1, . . . , r} the p-th exterior power
p∧
E is H-ample, and for all positive integer numbers m the m-th symmetric power SmE

is H-ample.

Remark 3.2.14. More in general, applying a Schur functor S to an H-ample Higgs bundle

E one has again an H-ample Higgs bundle S(E). ♢

On the other hand, repeating the proof of [12, Proposition 4.8] one proves the following

proposition.

Proposition 3.2.15. Let E be such that Sm(E) is H-ample for some m ∈ N≥2. Then E is

H-ample.

3.3 H-nef and H-nflat Higgs bundles

We start this section recalling the definitions of H-nef and H-nflat Higgs bundle given in

[13]. We require the nefness of the determinant line bundle and recursively the H-nefness

of all universal Higgs quotient bundles.

Definition 3.3.1 (see [13, Definition A.2]). A Higgs bundle E = (E,φ) of rank one is

said to be Higgs-numerically effective (H-nef, for short) if E is numerically effective in the

usual sense. If rank(E) ≥ 2, we inductively define H-nefness by requiring that

a) all Higgs bundles Qs,E are H-nef for all s, and

b) the determinant line bundle det(E) is nef.

E is Higgs-numerically flat (H-nflat, for short) if E and E∨ are both H-nef.

We recall that a line bundle L over a projective (non necessary smooth) variety X is nef

if for any morphism f : C → X from an irreducible projective curve C the inequality∫
C

c1 (f
∗L) ≥ 0 holds.

Remark 3.3.2.

a) The first Chern class of an H-nflat Higgs bundle is numerically zero, because the corre-

sponding determinant bundle is nflat. Note that if E nef/nflat in the usual sense, then

E is H-nef/H-nflat. If φ = 0, the Higgs bundle E = (E, 0) is H-nef/H-nflat if and only

if E is nef/nflat in the usual sense.
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b) The Higgs bundle described in Example 1.2.3 is semistable of degree 0 over a smooth

projective curve, by [13, Lemma A.7] it is H-nflat. But it is not semistable as ordinary

vector bundle and therefore it is not nflat. ♢

Even H-nef Higgs bundles satisfy properties analogous to those of H-ample Higgs bundles.

These properties have been proved in [11, 12, 3]; here we list some of them for completeness.

Lemma 3.3.3. Let E be an H-nef Higgs bundle over X. The following statements hold.

a) Let f : Y → X be a morphism of smooth projective varieties. Then f ∗E is H-nef ([11,

Proposition 2.6.(ii)]). If f is also surjective and f ∗E is H-nef then E is H-nef ([3,

Lemma 3.4]).

b) Every quotient Higgs bundle of E is H-nef ([3, Lemma 3.5]).

c) Tensor products of H-nef Higgs bundles are H-nef ([3, Theorem 3.6]).

d) Exterior and symmetric powers of H-nef Higgs bundles are H-nef (cfr. [12, Propositions

3.5, 4.4 and Lemma 4.5]).

e) E is H-nef if and only if the Higgs bundle E⊗OX(D) = (E⊗OX(D), φ⊗Id) is H-ample

for every ample Cartier Q-divisor D in X ([11, Proposition 2.6.(i)]).

f) E is H-nef if and only if for every finite morphism f : C → X one has µmin (f
∗E) ≥ 0;

where C is a smooth irreducible projective curve; µmin (f
∗E) is defined via the relevant

HN-filtration (1.3) ([3, Lemma 3.3]).

g) Let K = C. Then the extensions of H-nef Higgs bundles are H-nef ([12, Propositions

3.9, 4.4 and Lemma 4.5]).

Remark 3.3.4. In [11], the first part of the statement a and the statement e are proved

assuming that K = C, however these proofs work in general by [45, Propositions 6.1.2.(ii)

and 6.1.8.(iv)]. ♢

Here we prove a corollary of Lemma 3.3.3.f, which will be used to extend Lemma 3.3.3.g

to any algebraically closed field of characteristic 0.

Corollary 3.3.5. E is H-nef if and only if

a) the line bundle det(E) is nef;

b) for every morphism f : C → X, and every Higgs quotient Q of f ∗E, the inequality

deg(Q) ≥ 0 holds.
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Proof. Let E be H-nef; by definition det(E) is nef. For any morphism f : C → X, f ∗E

is H-nef by Lemma 3.3.3.a, and its Higgs quotient bundles Q are H-nef by Lemma 3.3.3.b

hence deg(Q) ≥ 0.

Vice versa, let E satisfy the hypotheses and let

{0} = E0 ⫋ E1 ⫋ . . . ⫋ Em−1 ⫋ Em = f ∗E

be the HN-filtration of f ∗E. By hypothesis µmin (f
∗E) = µ (Em/Em−1) ≥ 0, hence by

Lemma 3.3.3.f we conclude. Q.e.d.

Example 3.3.6. Let X be an irreducible smooth projective curve of genus g, and let

E = (L1 ⊕ L2, φ) be the nilpotent Higgs bundle described in the Example 3.2.3. Let d1

and d2 be the degree of L1 and L2, respectively; we assume that d1 ≤ 2g − 2 + d2. Let

d1+ d2 ≥ 0 so that det(E) is nef. Then E is H-nef if and only if deg(L1) = d1 ≥ 0. Indeed,

if f : C → X is a finite morphism, according to Proposition 3.2.2.b, f ∗E has only one rank

1 Higgs quotient bundle which is Q1 = f ∗L1 with zero Higgs field. Now

deg(Q1) ≥ 0

so that E is H-nef whenever d1 ≥ 0 by the previous corollary. On the other hand, if E is

H-nef, then L1 is nef by Lemma 3.3.3.b i.e. d1 ≥ 0.

If g ≥ 2 one can arrange d1 ≥ 0, d2 < 0 so that E is not nef as an ordinary bundle (for

instance, with g = 2 we take d1 = 1 and d2 = −1). △

Proposition 3.3.7. Let 0 → E1 → E → E2 → 0 be a short exact sequence of Higgs bundles

over X with E1 = (E1, φ1) and E2 = (E2, φ2) H-nef. Then E is H-nef.

Proof. Repeating the proof of Theorem 3.2.10, we construct the following commutative

diagram

0 // f ∗E1
i //

π1
��

f ∗E
p //

π

��

f ∗E2
//

π2
��

0

0 // Q1
ĩ

//

��

Q
p̃
//

��

Q2
//

��

0

0 0 0

where:

� Q1,Q,Q2 are Higgs quotient bundles of f ∗E1, f
∗E, f ∗E2, respectively;

� the rows are exact.
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Thus:

deg(Q) = deg(Q1) + deg(Q2) ≥ 0,

and by Corollary 3.3.5 we conclude. Q.e.d.

Category of H-nflat Higgs bundles satisfies other properties which have been proved in

[13, 3, 44, 9].

Lemma 3.3.8.

a) If the pullback of E via any f : C → X is semistable and

∫
C

f ∗c1(E) = 0, then E is

H-nflat (cfr. [13, Lemma A.7]).

b) Any H-nflat Higgs bundle is semistable ([13, Proposition A.8]).

c) Extensions of H-nflat Higgs bundles are H-nflat ([3, Proposition 3.1.(iii)]).

d) Tensor products of H-nflat Higgs bundles are H-nflat ([3, Proposition 3.1.(iv)]).

e) Kernels and cokernels of morphisms of H-nflat Higgs bundles are H-nflat Higgs bundles

([3, Propositions 3.7 and 3.8]).

f) Let E be a Higgs bundle over X and let K = C. E is H-nflat if and only if it is

pseudostable ( i.e., it has a filtration whose quotients are locally free and stable) and the

quotients of the filtration are H-nflat ([9, Theorem 3.2]).

Remark 3.3.9. The “if part” of Lemma 3.3.8.f follows by Lemma 3.3.8.c. Indeed, let E be

a Higgs bundle and let

0 = F0 ⫋ F ⫋ F1 ⫋ . . . ⫋ Fm ⫋ Fm+1 = E

be a filtration of E in Higgs subbundle whose quotients F,Q1, . . . ,Qm+1 are locally free,

stable and H-nflat. As explained in the proof of [9, Theorem 3.2], F1 is H-nflat. Consider

the short exact sequence

0 // F1
// F2

// Q2
// 0 ,

since F1 and Q2 are H-nflat, by Lemma 3.3.8.c F2 is H-nflat. Iterating this reasoning, we

prove that E is H-nflat. ♢

Even if [13, Lemma A.7 and Proposition A.8] have been proved where K = C, we shall

explain that this hypothesis is useless at page 46, in the sense this lemma works on alge-

braically closed field of characteristic 0. Thus, also the Lemmata 3.3.8.c and 3.3.8.d hold

on any algebraically closed field of characteristic 0. The original proofs of the remaining

lemmata continue to be valid in this extending setting, therefore we do not repeat them

here. Moreover, we shall erase the hypothesis of K = C in Lemma 3.3.8.f.



Chapter 4

Curve semistable Higgs bundles

and positivity conditions

The contents of this chapter are mainly based on papers [9] and [10] written in collaboration

with Ugo Bruzzo and Beatriz Graña Otero.

4.1 Curve semistable Higgs bundles

Let E = (E,φ) be a rank r ≥ 2 Higgs bundle over a smooth projective variety X of

dimension n over an algebraically closed field of characteristic 0, whenever we consider a

morphism f : C → X, we understand that C is an irreducible smooth projective curve.

Definition 4.1.1. E is curve semistable if for every morphism f : C → X the pullback

Higgs bundle f ∗E is semistable.

The study of this class of Higgs bundle has started in [15] as a generalisation to Higgs

bundles framework of Miyaoka’s work [52, Section 3] on semistable vector bundles over

smooth projective curves. There Bruzzo and Hernández Ruipérez have introduced the

following numerical classes

λs(E) =
[
c1

(
OGr1(Qs,E)(1)

)]
− 1

r
ϖ∗
s(c1(E)) ∈ N1 (Gr1 (Qs,E)) (4.1)

θs(E) = [c1 (Qs,E)]−
s

r
ρ∗s(c1(E)) ∈ N1 (Grs(E)) (4.2)

where s ∈ {1, . . . , r − 1}, ρs : Grs(E) → X has been defined in the previous chapter and

ϖs : Gr1 (Qs,E) → Grs(E)
ρs−→ X. Bruzzo, Graña Otero and Hernández Ruiperéz have

proved in [15, 11, 13] the following theorems to which the following notions are premised.

43
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We recall that a class γ ∈ N1(X) is numerically effective (nef, for short) if for any irre-

ducible projective curve C ⊆ X the inequality γ · [C] ≥ 0 holds. And we call positive a

class γ ∈ N1(X) if for any irreducible projective curve C ⊆ X the inequality γ · [C] > 0

holds.

Theorem 4.1.2 (see [15, Theorem 1.2]). E is curve semistable if and only the classes θs(E)

are nef for any s ∈ {1, . . . , r − 1}.

Theorem 4.1.3 (see [15, Theorem 1.2]). E is curve semistable if and only if the classes

λs(E) are nef for any s ∈ {1, . . . , r − 1}.

Remark 4.1.4. By definition λ1(E) = θ1(E). Thus if r = 2 the previous theorems are the

same. ♢

Before proving these theorems, we recall the following lemma.

Lemma 4.1.5 (see [15, Lemma 3.3]). Let f : Y → X be a finite surjective morphism of

smooth projective curves. Then E is semistable if and only if f ∗E is semistable.

Proof. If E is unstable then there exists a torsion-free Higgs subsheaf F of E such that

µ(F) > µ(E), hence µ (f ∗F) > µ (f ∗E) i.e. f ∗E is unstable. Let us assume f ∗E unstable,

without loss of generality we can assume that f is a Galois covering1 with Galois group

G, i.e. the field extension f# : K(X) → K(Y ) is normal (and separable) and the relevant

Galois group is G. Let F =
(
F, f ∗φ|F

)
be the maximal destabilizing Higgs subsheaf of f ∗E.

For any g ∈ G, g∗F is a destabilizing Higgs subsheaf of f ∗E of maximal rank; however by

the unicity of the HN-filtration of f ∗E it has to be g∗F = F. From all this, it follows that

F = f ∗E0 for some destabilizing subbundle E0 of E. By [30, Exercise III.9.3.a] f is a flat

morphism, and since it is also surjective then f is (by definition) faithfully flat. Thus the

composition E0 ⊗ Ω1
X → E ⊗ Ω1

X → (E/E0)⊗ Ω1
X vanishes if and only if the composition

F ⊗ f ∗Ω1
X → f ∗E ⊗ f ∗Ω1

X → (f ∗E/F )⊗ f ∗Ω1
X vanishes. Consider the following diagram

0

��

0

��
F //

f∗φ ''

f ∗E ⊗ f ∗Ω1
X

//

��

(f ∗E/F )⊗ f ∗Ω1
X

��
0 // F ⊗ Ω1

Y
// f ∗E ⊗ Ω1

Y
// (f ∗E/F )⊗ Ω1

Y
// 0

since f ∗φ|F takes values in F ⊗ Ω1
Y we have the claim, i.e. E is unstable. Q.e.d.

1In general, if char(K) > 0 then we need also that f is separable as stated in [52, 15].
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Proof of Theorem 4.1.2. Let C ⊆ X be an irreducible projective curve and assume that

the restriction θs(E)|C of θs(E) to Grs
(
E|C
)
is nef. If F = (F, ψ) is a rank s torsion-free

Higgs quotient sheaf of E|C then by [57, Corollary at page 75] F is locally free. By Theorem

3.1.3 there exists a unique section σ : C → Grs
(
E|C
)
such that F = σ∗Qs,E|C , where Qs,E|C

is the restriction of Qs,E to Grs
(
E|C
)
. Then

0 ≤ θs(E)|C · [σ(C)] = deg(F )− s

r
deg

(
E|C
)
= s

(
µ(F )− µ

(
E|C
))

;

thus if any θs(E) is nef then by Proposition 1.2.5 E|C is semistable, i.e. E is curve

semistable. Vice versa, let E curve semistable and let us assume that θs(E) is not nef

for some s ∈ {1, . . . , r − 1} i.e. there exists an irreducible projective curve C ′ ⊆ Grs(E)

such that θs(E) · [C ′] < 0. Under this hypothesis, C ′ is not contained in a fibre of ρs,

hence it surjects onto a projective curve C ⊆ X. We may choose a projective curve C ′′

and a morphism h : C ′′ → C such that C̃ = C ′′ ×C C
′ is a union of projective curves Cj

isomorphic to C (see the proof of [52, Theorem 3.1]); θs (h
∗E) · [Cj] < 0 for any index j

evidently. For clarity, we have the following Cartesian diagram

Grs (h
∗E)

hs
//

��

Grs
(
E|C
)
� � //

��

Grs(E)

ρs

��

C ′? _oo

C ′′
h

// C �
�

i
// X

,

by the universal property of fibre products C̃ ↪→ Grs (h
∗E). Let Ej = h∗s

(
ρ∗sE|C

)
|Cj

and

let Qj = Qs,h∗E|Cj
. By Lemma 4.1.5 Ej is a semistable Higgs bundle and in particular

µ(Qj) ≥ µ(Ej). On the other hand

0 > θs (h
∗E) · [Cj] =

(
c1(Qj)−

s

r
ρ∗sc1(E)

)
· [Cj] = s (µ(Qj)− µ(Ej))

where Ej and Qj are the underlying vector bundles to Ej and Qj, respectively. But by

Proposition 1.2.5 this is a contradiction with the assumptions, hence all classes θs(E) have

to be nef. Q.e.d.

Proof of Theorem 4.1.3. The class λs(E) may be regarded as the numerical class of

the hyperplane bundle of the Higgs Q-bundle Fs = Qs,E⊗ ρ∗s
(
det(E)−1/r

)
over Grs(E). As

consequence

c1(Fs) = c1 (Qs,E)−
s

r
ρ∗sc1(E) ⇒ θs(E) = [c1(Fs)] ∈ N1 (Grs(E)) .

From all this, the classes λs(E) are nef if and only if the classes θs(E) are nef, i.e. if and

only if E is curve semistable (Theorem 4.1.2). Q.e.d.



46 Curve semistable Higgs bundles whose discriminant class vanishes

Remark 4.1.6. Miming Definition 4.1.1, E is curve stable if for every morphism f : C → X

the pullback Higgs bundle f ∗E is stable.

By the previous proofs, the curve stability of E implies the positivity of θs(E) and λs(E)

for any s ∈ {1, . . . , r − 1}. ♢

Now we are position to prove that [13, Lemma A.7] works on any algebraically closed field

of characteristic 0. This proof needs Theorem 4.1.2.

Proof of Lemma 3.3.8.a. Under these hypotheses, the classes c1

(
OGr1(Qs,E)(1)

)
are

nef for any s ∈ {1, . . . , r − 1} (Theorem 4.1.3), hence their pullbacks to Grs (f
∗Qs,E)

are nef. In other words, using the notations introduced in Remark 3.2.4.b, Q(1,s),E is

nef; and it remains only to prove that det
(
Q(s1,··· ,sk),E

)
are nef for all strings of integer

numbers 1 ≤ s1 < s2 < . . . < sk < r. By construction, Q(s1,··· ,sk),E is a Higgs bundle over

Grs1
(
Q(s2,··· ,sk),E

)
and there is a morphism ρ(s1,··· ,sk) : Grs1

(
Q(s2,··· ,sk),E

)
→ X such that

Q(s1,··· ,sk),E is a rank s1 Higgs quotient bundle of ρ∗(s1,··· ,sk)E. Thus there exists a unique

morphism g(s1,··· ,sk) : Grs1
(
Q(s2,··· ,sk),E

)
→ Grs1(E) such that Q(s1,··· ,sk),E = g∗(s1,··· ,sk)Qs1,E

(Theorem 3.1.3). Therefore[
c1
(
Q(s1,··· ,sk),E

)]
= g∗(s1,··· ,sk) [c1 (Qs1,E)] = g∗(s1,··· ,sk)θs1(E)

because

∫
C

f ∗c1(E) = 0, hence det
(
Q(s1,··· ,sk),E

)
is nef because θs1(E) is nef by Theorem

4.1.2. In other words E is H-nef. Repeating all this reasoning, considering that also E∨ is

curve semistable by Lemma 1.2.9, c1 (E
∨) = −c1(E) hence

∫
C

f ∗c1 (E
∨) = 0, we prove in

the same way the H-nefness of E∨, i.e. E is H-nflat. Q.e.d.

4.2 Curve semistable Higgs bundles

whose discriminant class vanishes

We have introduced the curve semistable Higgs bundles because we would like to extend

the following theorem to Higgs bundles.

Theorem 4.2.1 (cfr. [55, Theorem 2] and [15, Theorem 1.4]). For a vector bundle E over

a smooth projective variety X the following statements are equivalent:

a) θ1(E) is nef;

b) E is curve semistable;
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c) E is semistable with respect to some polarization H and c2 (End(E)) = 0 ∈ A2(X);

d) E is semistable with respect to some polarization H and

∫
X

c2 (End(E)) ·Hn−2 = 0.

Proof. (a) is equivalent to (b). This is [52, Theorem 3.1] when dimX = 1. Let

dimX ≥ 2. If E is curve semistable then θ1(E) is nef by Theorem 4.1.2. Vice versa, if

θ1(E) is nef, let f : C → X be a morphism. Consider the following Cartesian diagram

Gr1 (f
∗E)

f //

p1|C≡f∗(p1)
��

Gr1(E)

p1
��

C
f

// X

,

one has

f
∗
λ1(E) = f

∗ ([
c1
(
Q1,E ⊗ p∗1

(
det(E)−1/r

))])
=
[
c1
(
Q1,f∗E ⊗ p∗1|C

(
det(E)−1/r

))]
= λ1 (f

∗E) .

Since Q1,E ⊗ p∗1
(
det(E)−1/r

)
is nef then its pullback Q1,f∗E ⊗ p∗1|C

(
det(E)−1/r

)
via f is nef

(Lemma 3.3.3.a). Thus λ1 (f
∗E) is nef as well, and by [52, Theorem 3.1] f ∗E is semistable.

In other words, we have the claim.

(b) implies (c). By hypothesis, for any morphism f : C → X, f ∗E is semistable. By

Lemma 2.3.1 f ∗ End(E) = f ∗ (E ⊗ E∨) = f ∗E ⊗ f ∗E∨ is semistable i.e. End(E) is curve

semistable. Since c1(End(E)) = 0 then End(E) is nflat (Lemma 3.3.8.a), hence it is

semistable (Lemma 3.3.8.b) and this implies the semistability of E (Lemma 2.3.1). Finally

[19, Propositions 1.2.9 and 1.3] proves that c2(End(E)) = 0.

(c) implies (b). If dimX = 1 there is nothing to prove of course. Let dimX = n ≥ 2,

repeating the reasoning of Theorem 2.2.5 we can assume K ⊆ C. Consider the following

Cartesian diagram

XC
f //

��

X

��
Spec(C) // Spec(K)

,

by hypothesis End(E) is a degree 0 semistable Higgs bundle with c2(End(E)) = 0, and by

Lemma 2.2.4 f ∗ End(E) is a semistable vector bundle overXC such that c2 (f
∗ End(E)) = 0.

If there exists a morphism g : C → X such that g∗E is unstable, then by Lemma 2.2.4 g∗E

is unstable, where g is the base change morphism of g over C = C ×K C. This gives rise

a contradiction: g∗ End(E) is the pullback of f ∗ End(E) over C and it is unstable, but by

[15, Theorem 1.4] g∗ End(E) is semistable. To avoid this absurd, E is curve semistable.
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(c) implies (d). This is trivial.

(d) implies (c). By Lemma 2.3.1 End(E) is semistable with

∫
X

c2(End(E)) = 0, while

c1(End(E)) = 0 of course. Let

{0} = F0 ⫋ F1 ⫋ . . . ⫋ Fm−1 ⫋ Fm = End(E),

be a JH-filtration of End(E), by [42, Corollary 6] this can be chosen in a way that the

quotientsQi = Fi/Fi−1 have vanishing Chern classes for any i ∈ {1, . . . ,m}. In other words,

End(E) is an iterating extension of vector bundles with vanishing Chern classes, thus the

same statement holds for the Chern classes of End(E); in particular c2(End(E)) = 0. Q.e.d.

Moreover, the previous theorem is equivalent to the following one.

Theorem 4.2.2 (cfr. [3, Corollary 3.2]). On a smooth projective variety X, the following

statements are equivalent.

a) Let E be a curve semistable vector bundle over X. Then E is semistable with respect

to some polarization H and c2 (End(E)) = 0 ∈ A2(X).

b) The Chern classes of any nflat vector bundle over X vanish.

Proof. If (a) holds, let E be a nflat vector bundle over X. By Lemma 3.3.8.b, E

is semistable. Furthermore, applying also Lemma 3.3.3.a, E is curve semistable hence

c2(E) = c2 (End(E)) = 0. By [42, Corollary 6], E is extension of vector bundles whose

Chern classes vanish, hence the same vanishing holds for the Chern classes of E.

If (b) holds, let E be a curve semistable vector bundle over X. For any f : C → X one

has f ∗ End(E) ∼= End (f ∗E). By Lemma 2.3.1, End(E) is curve semistable. Since End(E)

satisfies the hypotheses of Lemma 3.3.8.a, it is nflat hence c2 (End(E)) = 0. By Lemmata

2.3.1 and 3.3.8.b, E is semistable. Q.e.d.

Remark 4.2.3. Since Theorem 4.2.1 proves that Theorem 4.2.2.a holds, one has another

proof of Theorem 4.2.2.b. This has been proved by [19, Proposition 1.3] originally. ♢

In the Higgs bundles setting, Theorem 4.2.1 changes as it follows.

Theorem 4.2.4. Let E = (E,φ) a rank r Higgs bundle over a smooth projective variety

X. Consider the following statements:

a) θ1(E), . . . , θr−1(E) are nef;

b) E is curve semistable;
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c) E is semistable with respect to some polarization H and c2 (End(E)) = 0 ∈ A2(X);

d) E is semistable with respect to some polarization H and

∫
X

c2 (End(E)) ·Hn−2 = 0.

The following implications hold

(a) ks +3 (b) ks (c) ks +3 (d).

It is enough to repeat the proof of Theorem 4.2.1. However if E is curve semistable

then End(E) = (End(E),End(φ)) is H-nflat (by Lemmata 2.3.1 and 3.3.8.a), hence E is

semistable, but it is unknown whether c2(End(E)) = 0.

Remark 4.2.5. If E is semistable and c2(End(E)) = 0 then E is semistable with respect

to any polarization of X. This follows from the fact that the semistability of H-nflat Higgs

bundles does not depend on the polarization of X. ♢

From all this, we are interested to study whether the condition 4.2.4.b implies the condition

4.2.4.c. To simplify the exposition of the corresponding topics, we introduce the following

class

∆(E) =
1

2r
c2(End(E)) = c2(E)−

r − 1

2r
c1(E)

2 ∈ A2(X)

which is called discriminant class of E (cfr. Theorem 1.3.1). We recall the following

conjecture.

Conjecture 1 (Bruzzo and Graña Otero Conjecture). Let E be a curve semistable

Higgs bundle over X. Then E is semistable with respect to some polarization H and

∆(E) = 0.

Remark 4.2.6. The best of our knowledge, the previous conjecture, assuming K = C, has
been proved in the following cases:

a) r = 2, by [14, Theorems 4.5, 4.8 and 4.9];

b) X has nef tangent bundle, by [17, Corollary 3.15];

c) dimX = 2 and κ(X) ∈ {−∞, 0} (the Kodaira dimension of X). Indeed, the statement

for ruled surfaces follows by [17, Proposition 3.11]. Since rational surfaces are rationally

connected, the statement follows by [17, Theorem 3.6]. The statement for Abelian

surfaces follows by [17, Corollary 3.8], the case of K3 surfaces follows by [16, Theorem

6.4] and thus for Enriques surfaces and hyperelliptic surfaces follow by [17, Proposition

3.12]. All this complete this case;
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d) dimX = 2, κ(X) = 1 and other technical hypotheses, see [18, Proposition 5.6];

e) X is a simply-connected Calabi-Yau variety, by [9, Theorem 4.1];

f) if X satisfies the Conjecture 1 and Y is a fibred projective variety over X with rationally

connected fibres, then Y does the same [17, Proposition 3.11];

g) if X satisfies the Conjecture 1 then any finite étale quotient Y of X does the same [17,

Proposition 3.12];

h) E has a JH-filtration whose quotient are H-nflat and have rank at most 2 (corollaries

4.3.6 and 4.3.7);

i) particular Higgs bundles described in [12], for more details see Appendix A. ♢

To be more precise, the Conjecture 1 can be simplified using [62, Lemma 3.7], as remarked

in [44]. In other words, the Conjecture 1 can be rephrased as it follows.

Conjecture 2. Let E be a curve semistable Higgs bundle over a smooth projective surface

X. Then E is semistable with respect to some polarization and ∆(E) = 0.

Furthermore, the previous conjectures are equivalent to a third one.

Conjecture 3. Let E be H-nflat over a smooth projective surface X. Then its Chern

classes vanishes.

The fact that the previous conjecture implies Conjecture 2 is proved by [3, Corollary

3.2]. Furthermore, Biswas, Bruzzo and Gurjar have proved the other implication assuming

K = C; here we give a proof which works under our assumption.

Proposition 4.2.7. Conjecture 2 implies Conjecture 3.

Proof. Let us assume E is H-nflat and Conjecture 2 holds, by Lemmata 3.3.8.a and 3.3.8.b

it is curve semistable with ∆(E) = c2(E) = 0 because c1(E) = 0. Applying [42, Corollary

6], E is an iterating extension of vector bundles with vanishing Chern classes, hence the

Chern classed of E vanish. Q.e.d.

Remark 4.2.8. When the Higgs field vanishes, [19, Proposition 1.3] proves the vanishing

of Chern classes for nflat vector bundles over smooth projective varieties. This last result

has been extended to compact Kähler manifolds by [20, Corollary 1.19]. ♢
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4.3 Jordan-Hölder filtrations of H-nflat Higgs bundles

As done for Lemma 3.3.8.a, we improve Lemma 3.3.8.f generalising the hypothesis on the

underlying field. We need some technical tools which are interesting by their own. To

be exact, we extend some results known on the complex number field to any algebraically

closed field of characteristic 0.

From now on, let E = (E,φ) be a rank r Higgs bundle over a smooth projective polarized

variety (X,H), defined over an algebraically closed field of characteristic 0, and let E be

the sheaf of sections of E, if not otherwise indicated.

Lemma 4.3.1 (cfr. [20, Lemma 1.20]). Let F be a rank s reflexive subsheaf of E such that

the induced bundle morphism det(F) →
s∧
E is injective. Then F is locally free and it is

a subbundle of E.

Definition 4.3.2. A section s of E is φ-invariant if there exists a section λ of Ω1
X such

that φ(s) = s⊗ λ.

Proposition 4.3.3 ([9, Proposition 2.4]). Let E = (E,φ) be an H-nef Higgs bundle over

X and let E∨ = (E∨, φ∨) be the dual Higgs bundle. If s is φ∨-invariant global section of

E∨, then s has no zeroes.

Proof. Note that s defines a monomorphism of Higgs sheaves f : (OX , λ) → (E∨, φ∨),

where φ∨(s) = s ⊗ λ and λ ∈ H0 (X,Ω1
X). Dualizing this monomorphism, one has a

morphism of Higgs sheaves f∨ : (E,φ) → (OX , λ); if s has zeroes, then f∨ has zeroes as

well, and Im f∨ is a proper Higgs subsheaf of (OX , λ), hence it has negative degree on some

projective curve in X. This contradicts the H-nefness of the Higgs quotient bundles of E

(see Lemmata 3.3.3.a and 3.3.3.b). Q.e.d.

Lemma 4.3.4 (cfr. [9, Lemma 3.1]). Let E = (E,φ) be an H-nflat Higgs bundle over X

of rank r ≥ 2. If E is not stable, it can be written as an extension

0 // F // E // Q // 0 (4.3)

where F and Q are locally free H-nflat Higgs bundles, and F is stable.

Proof. Note that E is semistable by Lemma 3.3.8.b and has degree zero. Let F = (F, ψ)

be a Higgs subsheaf of E of rank p, with 0 < p < r. As E is semistable of zero degree,

p∧
E

is semistable of zero degree as well by Theorem 2.2.5. Let det(F ) =

(
p∧
F

)∨∨

be the
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determinant of F , and let det(F) be the sheaf det(F ) equipped with the naturally induced

Higgs field. As det(F) injects into

p∧
E (as a Higgs sheaf), we have deg(F ) ≤ 0.

We can assume that F is a reflexive Higgs subsheaf of E of minimal rank p > 0 with

deg(F ) = 0. Then F is stable. We have an exact sequence

0 // det(F) //
p∧
E // R // 0 (4.4)

where R = (R,χ) is the quotient Higgs sheaf. We use this to show that (det(F ))∨ is nef.

Let f : C → X be a morphism, where C is a smooth irreducible projective curve. Then

f ∗R splits as R̃⊕ T , where R̃ is a locally free sheaf and T is a torsion sheaf; in particular,

T with the restriction of the pullback Higgs field is a Higgs sheaf2. Thus R̃, again with

the restriction of the pullback Higgs field, is a Higgs quotient bundle of f ∗R hence it is a

locally free quotient of f ∗

(
p∧
E

)
, therefore it is H-nef, and then deg (f ∗R) ≥ 0. Then

deg (f ∗ det(F )) ≤ 0, and since the choice of C is arbitrary, (det(F ))∨ is nef.

Since c1(F ) ≡num 0, det(F ) is numerically flat. Tensoring the exact sequence (4.4) by

det−1 F one obtains a detψ∨ ⊗φp-invariant section σ : (OX , λ) → (det(F))∨ ⊗
∧p E, where

φp is the Higgs field of

p∧
E and (detψ∨ ⊗ φp) (σ) = σ⊗λ. By Proposition 4.3.3, σ has no

zeroes, i.e. det(F) is a Higgs subbundle of

p∧
E; by Lemma 4.3.1 F is a Higgs subbundle

of E. Thus F is an H-nflat Higgs bundle, and then by Lemma 3.3.8.e the quotient Higgs

sheaf Q is locally free and H-nflat as well. Q.e.d.

Theorem 4.3.5 (cfr. [9, Thereom 3.2]). Let E be a Higgs bundle over X. E is H-nflat if

and only if it is pseudostable ( i.e., it has a filtration whose quotients are locally free and

stable), and the quotients of the filtration are H-nflat.

Proof. Assuming that such a filtration exists, then E is H-nflat by Lemma 3.3.8.c.

Vice versa, let E be H-nflat. We use Lemma 4.3.4 as the basis for an iterative proof. Note

that in eq. (4.3) if the Higgs bundle Q is stable, we have the claim. Otherwise, Q satisfies

the same hypothesis as E, so that it sits in a short exact sequence

0 // Q1
// Q // Q2

// 0

2See footnote 2 at page 5.
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where Q1 and Q2 are locally free and H-nflat and Q1 is stable. By the Snake Lemma we

have a diagram

0

��
0

��

0

��

Q1

��
0 // F //

��

E //

��

Q //

��

0

0 // F1
//

��

E //

��

Q2
//

��

0

Q1

��

0 0

0

Note that again F1 is locally free and H-nflat by Lemma 3.3.8.e. Therefore 0 ⫋ F ⫋ F1 ⫋ E

is a filtration whose quotients Q1 and Q2 are locally free and H-nflat; moreover, F and Q1

are stable. If Q2 is stable as well, the claim is proved. If it is not, we iterate the procedure,

until we get a locally free quotient which is stable (possibly a line bundle). At step k we

shall have the diagram

0

��
0

��

0

��

Qk

��
0 // Fk−1

//

��

E //

��

Qk−1
//

��

0

0 // Fk //

��

E //

��

Qk+1
//

��

0

Qk

��

0 0

0

and if m is the last step we get a filtration

0 = F0 ⫋ F ⫋ F1 ⫋ . . . ⫋ Fm ⫋ Fm+1 = E (4.5)
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whose quotients F,Q1, . . . ,Qm+1 are locally free, stable and H-nflat. Q.e.d.

By the previous theorem, we can prove Conjecture 3 in new cases. From now on dimX = 2.

Corollary 4.3.6 (cfr. [9, Corollary 3.3]). If E = (E,φ) is an H-nflat Higgs bundle over X

such that all the quotients of the filtration (4.5) have rank 13, then E has vanishing Chern

classes.

Proof. Indeed c1 (Qk) = 0 for all k ≥ 1 as each Qk = (Qk, φ̃k) is an H-nflat line bundle,

so that ch(E) = 0 for all h ∈ {1, . . . ,min{n, r}}. Q.e.d.

Corollary 4.3.7. If E = (E,φ) is an H-nflat Higgs bundle over X such that all the

quotients of the filtration (4.5) have rank at most 2, then E has vanishing Chern classes.

Proof. Each Qk is either an H-nflat line bundle or a rank 2 H-nflat Higgs bundle, and this

last case Qk = (Qk, φ̃k) has vanishing Chern classes. Indeed, if φ̃k ̸= 0 then Gr1 (Qk) has

an irreducible component Z which is a divisor of Gr1 (Qk) and surjects onto X (Proposition

3.1.4), because

2 = dimX ≤ dimZ < dimGr1 (Qk) = 3,

hence c2 (Qk) = 0 by [14, Theorem 3.3]. Otherwise, if φ̃k = 0 then c2 (Qk) = 0 by [19,

Proposition 1.3]. From all this, ch(E) = 0 for all h ∈ {1, . . . ,min{n, r}}. Q.e.d.

Remark 4.3.8. Let E be a rank 3 H-nflat not stable Higgs bundle over X. By Lemma

4.3.4 and previous corollary, its Chern classes vanish. ♢

3Heuristically, these are the H-nflat Higgs bundles that are the farthest from being stable.



Chapter 5

The Simpson System

In this chapter, we give application of the positivity conditions for Higgs bundles and the

theory of curve semistable Higgs bundles to minimal smooth projective varieties of general

type.

Whenever we consider a morphism f : C → X, we understand that C is an irreducible

smooth projective curve.

5.1 The Simpson system on

minimal smooth projective surfaces of general type

The contents of this section are mainly based on the paper [10] written in collaboration

with Ugo Bruzzo and Beatriz Graña Otero, unless otherwise indicated.

LetX be a minimal smooth surface of general type. By [24, Proposition 10.7], the canonical

bundle KX of X is nef as well as being big. The Chern classes of X satisfy the Bogomolov-

Miyaoka-Yau inequality (BMY-inequality, for short)

BMY (X)
def.
=

∫
X

3c2(X)− c1(X)2 ≥ 0, (5.1)

where ck(X)
def.
= ck(TX) for any k. This has been proved in [69, Theorem 4] and [50,

Theorem 4] over C and in [52, Proposition 7.1] over K, an algebraically closed field of

characteristic 0. Moreover Miyaoka, working over C, has proved in [51, Corollary in the

Appendix in Paragraph 2] that the cotangent bundle of a surface of general type that

saturates the inequality (5.1) is ample.

55
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In this section we extend this result over K relying on the H-ampleness and H-nefness

criteria as expressed by [3, Lemma 3.3] and Theorem 3.2.6.

This will be based on the properties of the so called Simpson system, i.e. the Higgs bundle

S = (S, φ), where S = Ω1
X ⊕OX and

φ =

(
0 0

Id 0

)
, Id ∈ Hom

(
Ω1
X ,Ω

1
X

)
.

In the complex setting, Simpson proved that S is stable with respect to a polarization H

if some inequalities on the Chern classes of X hold (see [61, Proposition 9.9]). In particu-

lar, these inequalities are satisfied by the minimal smooth surfaces of general type which

saturate the inequality (5.1). On the other hand, Langer has extended this result in [42,

Proposition 3 and Remark 4], when K is an algebraically closed field of any characteristic.

From now on, X is a minimal smooth surface of general type over K which saturates

the inequality (5.1), unless otherwise indicated. These projective surfaces exist over C as

Miyaoka has proved in [50, Theorem 5]. They satisfy some interesting properties. Here we

give new proofs of some properties of these surfaces using the H-ampleness and H-nefness of

the twisted Simpson systems over them. These proofs are based on the curve semistability

of S; this fact extends the previous results of Simpson and Langer.

Proposition 5.1.1. Let X be a minimal smooth surface of general type over K such that

BMY (X) = 0. Then the Higgs bundle S is curve semistable.

Proof. By [42, Proposition 3 and Remark 4], S is stable. Since∫
X

∆(X) =

∫
X

c2(ΩX)−
1

3
c1(ΩX)

2 =

∫
X

c2(X)− 1

3
3c2(X) = 0,

hence the statement follows from Theorem 4.2.1. Q.e.d.

Remark 5.1.2. On smooth complex projective surfaces with ample canonical bundle, S

is stable: see Proposition 5.1.10. ♢

Theorem 5.1.3. Let X be a minimal smooth surface of general type over K such that

BMY (X) = 0. Then the Higgs bundle Sβ = S(−βKX) is H-nef for every rational number1

β ≤ 1

3
.

1As it is customary, we formally consider twistings by rational divisors, which make sense after pulling

back to a (possibly ramified) finite covering of X; on the other hand, the properties of being semistable,

H-ample, H-nef are invariant under such coverings (see Proposition 3.2.5.a, Lemmata 3.3.3.a and 4.1.5).
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Proof. By Propositions 1.2.8 and 5.1.1 and by Lemma 4.1.5 Sβ is curve semistable, so

that for every morphism f : C → X, the pullback Higgs bundle f ∗Sβ is semistable, hence

µ (f ∗Sβ) = µmin (f
∗Sβ) =

1

3

∫
C

f ∗c1(Sβ) =
1

3

∫
C′
c1(S(−βKX)) =

(
1

3
− β

)∫
C′
KX ≥ 0

where C ′ = f(C); the last inequality holds as KX is nef. By Theorem 1.4.9 any Higgs

quotient of f ∗Sβ has non negative degree. Furthermore, by the previous computation∫
C

f ∗c1(Sβ) = (1− 3β)

∫
C′
KX ≥ 0.

Thus, by the H-nefness criterion (Corollary 3.3.5), we have the nefness of det(Sβ), so that

the claim follows. Q.e.d.

Corollary 5.1.4 (cfr. [51, Proposition 5 and Corollary in the Appendix to Paragraph

2]). Let X be a minimal smooth surface of general type over K such that BMY (X) = 0.

Then the vector bundle Ωβ = Ω1
X(−βKX) is nef for every rational number β ≤ 1

3
. As a

consequence:

a) KX is ample;

b) any projective curve C on X satisfies the inequality 2pa(C) − 2 ≥ 1

3

∫
X

KX · C where

pa(C) is the arithmetic genus of C. In particular X does not contain neither rational

curves nor curves of arithmetic genus 1.

Proof. Ωβ with the zero Higgs field is a Higgs quotient of Sβ, hence it is H-nef (Lemma

3.3.3.b) and then nef in the usual sense (Remark 3.3.2.a). Let C ⊂ X be an irreducible

projective curve, let
(
C̃, ν

)
be its normalization, and let ι : C̃

ν−→ C ↪→ X. We have the

right exact sequence

ι∗Ω1
3

// Ω1
C̃

(
−1

3
ι∗KX

)
= OC̃

(
KC̃ − 1

3
ι∗KX

)
// 0

so that OC̃

(
KC̃ − 1

3
ι∗KX

)
is nef, i.e. its degree is nonnegative, and

2pa(C)− 2 ≥ 2pa

(
C̃
)
− 2 = degΩ1

C̃
≥ 1

3

∫
X

KX · C ≥ 0.

As a consequence X has no rational curves, then by [6, Proposition 1],

∫
X

KX ·C > 0. Since

this inequality holds for any projective curve on X and

∫
X

K2
X > 0 ([45, Theorem 2.2.16]),

it follows that KX is ample by Nakai-Moǐsezon Criterion ([30, Theorem V.1.10]). Q.e.d.
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On the other hand, the previous inequality is not sharp as the following example proves.

Example 5.1.5. Let X be a fake complex projective plane, i.e. X is a smooth projective

surface with the same Betti numbers of P2
C but is not isomorphic to P2

C ([54], [36, Section

5] and [37, Theorem 3.1]). Its canonical bundle KX is ample hence X is a minimal smooth

surface of general type and

∫
X

3c2(X) =

∫
X

c1(X)2 = 9 and the Picard number ρ(X) of X

is 1.

Let OX(1) be the ample generator of the torsion-free part of Pic(X) such thatKX = OX(3)

and c1 (OX(1))
2 = 1 (cfr. [22, Section 1.1]). Moreover, let f : C → X non-constant then

g(C) ≥ 3 by [38, Lemma 2.2] and [22, Proposition 2.3]. However, for a such C the previous

corollary predicts:

2g(C)− 2 ≥ 1

2 + 1

∫
X

OX(3)C =

∫
X

OX(1)C > 0 ⇐⇒ g(C) ≥ 2.

△

Remark 5.1.6 (cfr. [51, Corollary in the Appendix to Paragraph 2]). Now

Ω1
X ≃ Ω1

X

(
−1

3
KX

)
⊗OX

(
1

3
KX

)
by the previous corollary, Ω1

X is the tensor product of a nef bundle by an ample line bundle,

and therefore is ample by [45, Corollary 1.4.10]. ♢

It may be instructive to deduce the previous remark from the H-ampleness criterion of

Theorem 3.2.6.

Lemma 5.1.7. Let X be a minimal smooth surface of general type over K such that

BMY (X) = 0. Then the Higgs bundle S (the Simpson system) is H-ample.

Proof. Fix an ample class h. By the H-ampleness criterion (Theorem 3.2.6) a Higgs bundle

E is H-ample if and only if its determinant is ample and there exists a δ ∈ R>0 such that

µmin(f
∗E) ≥ δ

∫
C

f ∗h

for all f : C → X. Note that det(S) = KX is ample by Corollary 5.1.4. We take h = KX

and δ =
1

3
. Since S is curve semistable (Proposition 5.1.1)

µmin (f
∗S) = µ (f ∗S) =

1

3

∫
C

f ∗c1(S) = δ

∫
C

f ∗KX .

Q.e.d.
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Remark 5.1.8. S, as an ordinary bundle, is neither stable nor ample. Indeed, OX is a

quotient of S and µ(S) > µ(OX) = 0 (Remark 3.2.4.a, Propositions 1.2.5 and 3.2.5.b). ♢

Now we are in position to give the example announced in Remark 5.1.2.

Example 5.1.9 (cfr. [15, Example 3.9]). Let X be a minimal smooth surface of general

type such that BMY (X) > 0, Ω1
X is nef but not ample and KX is ample2. For simplicity

we assume K = C. By [65, Theorem 1] and Lemma 1.2.9, Ω1
X is semistable with respect

to the polarization KX .

By Bertini’s Theorem (cfr. [30, Corollary III.10.9 and Exercise III.11.3]), for m≫ 1 there

exists a smooth irreducible projective curve C ∈ |mKX |, and by [49, Theorem 6.1] Ω1
X|C

is semistable. Let us consider Gr1(S|C); it coincides with Gr1 (Ω
1
C)

∼= C. Indeed, consider

the following diagram

0 // OC
� � η //

0

��

S|C
ϵ // //

φ|C

��

Ω1
X|C

//

ψ

��

0

0 // Ω1
C
� �

η⊗Id
// S|C ⊗ Ω1

C ϵ⊗Id
// // Ω1

X|C ⊗ Ω1
C

// 0

which is commutative by construction. Computing the Higgs field ψ induced on Ω1
X|C , we

reason on the stalks. We have

∀x ∈ C, ω̃ ∈ Ω1
X|C , ϵ

−1
x (ω̃) = {(s, ω) ∈ Sx | π(ω) = ω̃} ,

φ|C,x
(
ϵ−1
x (ω̃)

)
= {ω̃} ⊆ Ω1

C,x = ker(ϵ⊗ Id)x

where π : Ω1
X|C → Ω1

C is the canonical projection. Thus ψ vanishes. On the other hand:

∀x ∈ C, ker
(
φ|C,x

)
= {(ωx, fx) ∈ Sx | π (ωx) = 0} ∼= ker(π)x ⊕OC,x ⇒ ker

(
φ|C
) ∼= ker(π)⊕OC ,

Im
(
φ|C,x

) ∼= Sx/ ker
(
φ|C,x

) ∼= Ω1
C,x ⇒ Im

(
φ|C
) ∼= Ω1

C ,

thus ker(π) = N ∨
C/X (the conormal bundle of C in X). It is a locally free sheaf because C

is a smooth projective curve. From all this, (Ω1
C , 0) is a rank 1 Higgs quotient bundle of(

Ω1
X|C , 0

)
hence Gr1 (Ω

1
C) ⊆ Gr1

(
Ω1
X|C

)
.

2Following [59, Example 1.7], let A be an Abelian 3-fold containing an elliptic curve E, let X be a

sufficiently positive smooth divisor of A containing E. Then X is a surface of general type; indeed, by

Adjunction Formula KX = X|X and by assumption this is big. Since A contains no rational curves, the

same is true for X, therefore X is a minimal model ([30, Theorem V.5.7]) and KX is ample (cfr. proof of

Corollary 5.1.4). Finally, Ω1
X is a quotient of Ω1

A|X = O⊕3
X , hence it is nef. Since X contains the elliptic

curve E, then

∫
X

3c2 (X)− c1 (X)
2
> 0 (Corollary 5.1.4) and by [45, Example 6.3.28] Ω1

X is not ample.
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Let K =
(
K, φ|C,K

)
be a rank 2 Higgs subsheaf of S|C such that the corresponding Higgs

quotient Q =
(
Q, φ̃|C

)
is locally free. By definition φ|C(K) = 0C ⊕ π(K) ⊆ K⊗Ω1

C ; this is

possible if and only if K = ker(π)⊕OC . From this follows that (Ω1
C , 0) is the only rank 1

Higgs quotient bundle of S|C , i.e. Gr1(S|C) = Gr1 (Ω
1
C).

So ∫
Gr1(Ω1

C)
θ1
(
S|C

)
=

∫
C

c1
(
Ω1
C

)
− 1

3
c1
(
S|C
)
=

=

∫
X

C · C + C ·KX − 1

3

∫
X

C ·KX =

(
m2 +

2

3
m

)∫
X

K2
X > 0

i.e. θ1
(
S|C

)
is positive.

Let L =
(
L, φ|C,L

)
be a rank 1 Higgs subsheaf of S|C such that the corresponding Higgs

quotient sheaf Q = (Q, φ̃) is locally free. If L ⊆ OC then we have the following commuta-

tive diagram

0

��

0

��

0

��
0 // L � � // OC� _

��

// // Q0
//

� _

��

0

0 // L � � //

��

S|C // //

����

Q //

����

0

0 // Ω1
X|C

��

Ω1
X|C

//

��

0

0 0

where rank (Q0) = 0 and Q = Ω1
X|C ⊕ Q0. Since Q is torsion-free then Q0 = 0C , hence

L = OC . On the other hand, let L ⫋ Ω1
X|C such that φ|C(L) ⊆ L⊗Ω1

C . This last condition

does not happen, because φ|C(L) ⊆ 0C ⊕ Ω1
C ⊆ (Ω1

C ⊗ Ω1
C) ⊕ Ω1

C , that is Ω1
X|C does not

contain Higgs subsheaves of S|C .

Thus Q is
(
Ω1
X|C , 0

)
hence C ∼= Gr2 (Q) = Gr2

(
S|C

)
is irreducible. And∫

Gr2
(
Ω1

X|C

) θ2 (S|C
)
=

∫
Gr2

(
Ω1

X|C

) c1 (Ω1
X|C
)
− 2

3
c1
(
S|C
)
=

=
1

3

∫
Gr2

(
Ω1

X|C

) c1 (Ω1
X|C
)
=
m

3

∫
X

K2
X > 0,

by definition θ2
(
S|C

)
is positive.
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From all this, S|C is semistable (Theorem 4.1.2). Moreover we have proved

µ
(
S|C
)
< µ

(
Ω1
X|C
)
, µ
(
S|C
)
< µ

(
Ω1
C

)
that is S|C is stable hence S is stable with respect to KX .

Note that Ω1
X is not curve semistable (Theorem 4.2.1), i.e. there exists f0 : C0 → X such

that Ω1
X|C0

≡ f ∗
0Ω

1
X is unstable. △

Implicitly, the previous example proves the following proposition.

Proposition 5.1.10. Let X be a smooth complex projective surface such that KX is ample.

Then S is stable with respect to KX .

5.2 The Simpson system on minimal smooth

complex projective varieties of general type

From now on, let X be a minimal smooth complex projective variety of general type with

n ≥ 2 and KX is ample, let S = (S, φ) be the Simpson system, and let

GY (X)
def.
= (−1)n

∫
X

(
c2(X)− n

2(n+ 1)
c1(X)2

)
· c1(X)n−2. (5.2)

Simpson has asked in [61] how to go between the condition GY (X) = 0, the stability of S

and the ampleness of KX when n ≥ 3. Here we give a solution to this problem.

Theorem 5.2.1. Let X be a smooth complex projective variety such that KX is ample.

The Higgs bundle S is stable with respect to KX .

Proof. As in Example 5.1.9, Ω1
X is semistable with respect to KX .

By Bertini’s Theorem (cfr. [30, Corollary III.10.9 and Exercise III.11.3]), for m≫ 1 there

exist ample smooth divisors D1, . . . , Dn−1 ∈ |mKX | such that Yp = D1 ∩ . . . ∩ Dp are

smooth projective subvarieties of X for any p ∈ {1, . . . , n− 1}3; we put C = Yn−1. By [49,

Theorem 6.1] Ω1
X|C is semistable.

The Higgs field induced by φ|C on the Higgs quotient Ω1
X|C vanishes (cfr. Example 5.1.9).

3Moreover, these smooth projective varieties are all minimal and of general type. Indeed, by Adjunction

Formula KY1 = (KX + Y1)|Y1
([66, Exercise 21.5.B]) and this is an ample line bundle ([45, Proposition

1.2.13 and Corollary 1.4.10]). Iterating these reasoning for all Yp one has the claim.
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We have the following inequality

0 < µ
(
S|C
)
=

1

n+ 1

∫
C

c1
(
S|C
)
<

1

n

∫
C

c1
(
Ω1
X|C
)
= µ

(
Ω1
X|C
)
.

Let ϖ : S|C → Q = (Q, φ̃) be a rank r Higgs quotient bundle of S and let K = ker(ϖ); K is

locally free because it is a kernel of an epimorphism of locally free sheaves on a Noetherian

scheme. We set

K1 = K ∩ Ω1
X|C ,K2 = K ∩OC .

1) LetK2 = 0C thenK ⊆ Ω1
X|C . This cannot happen, indeed, by assumption φ|C(K) ⊆ K ⊗ Ω1

C

but by definition φ|C(K) = 0C ⊕ π(K) ⊆
(
Ω1
X|C ⊗ Ω1

C

)
⊕ Ω1

C , that is K cannot be a

Higgs subsheaf of S|C . In other words, Ω1
X|C does not contain Higgs subsheaves of S|C .

2) Let K2 ̸= 0C then K2 = OC . Indeed, consider the following commutative diagram

0

��

0

��
0 // K2� _

��

� � // OC� _

��
0 // K

����

� � // S|C

����

// // Q
q
����

// 0

0 // K1

��

� � // Ω1
X|C

��

// // Q0

��

// 0

0 0 0

where the columns and the rows are short exact sequence of sheaves. By the universal

property of cokernels of morphisms, there exists a unique morphism q : Q ↠ Q0 which

makes commutative the diagram, and it is also an epimorphism. Computing the ranks:

rank
(
S|C
)
= n+ 1, rank(Q) = r ⇒ rank(K) = n− r + 1

rank (K2) = 1, rank(K) = n− r + 1 ⇒ rank (K1) = n− r

rank
(
Ω1
X|C
)
= n, rank (K1) = n− r ⇒ rank (Q0) = r

rank(Q) = rank (Q0) = r ⇒ rank (ker(q)) = 0;

on the other hand, ker(q) is locally free, because it is a torsion-free sheaf on a smooth

curve ([57, Corollary at page 75]). Thus ker(q) = 0C and Q ∼= Q0. Applying the Snake

Lemma, we have the long exact sequence

0 // K2
� � // OC

// ker(q) = 0C
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i.e. K2 = OC . From all this, it turns out thatQ is a Higgs quotient bundle of
(
Ω1
X|C , 0

)
.

Thus µ
(
S|C
)
< µ

(
Ω1
X|C

)
≤ µ(Q) because Ω1

X|C is semistable.

From all this, the claim follows from Proposition 1.2.5. Q.e.d.

Corollary 5.2.2. Let X be a smooth complex projective variety such that KX is ample. If

GY (X) = 0 then

a) the Higgs bundle S is curve semistable;

b) ∆(S) = c2(X)− n

2(n+ 1)
c1(X)2 = 0 ∈ H4(X,Q);

c) the Higgs bundle S is semistable with respect to any polarization of X.

Proof. (a) and (b). These follow directly from Theorem 4.2.4.

However we give another proof: since (Ω1
X , 0) is a rank n Higgs quotient bundle of S, then

Grn (Ω
1
X) ⊆ Grn(S) and

dimGrn
(
Ω1
X

)
= rank

(
Ω1
X

)
+ dimX − 1 = 2n− 1 = dimGrn(S) < dimGrn(S) = 2n,

hence Grn(S) has an irreducible component which is a divisor of Grn(S) and surjects

onto X. Thus S is curve semistable by [14, Theorem 4.9], because S is semistable and

∆(S) = 0.

(c). This follows by Remark 4.2.5. Q.e.d.

This last corollary permits us to extend Lemma 5.1.7 to any higher dimension; it is enough

to mimic the proof of dimension 2 case.

Lemma 5.2.3. Let X be a smooth complex projective variety such that KX is ample and

GY (X) = 0. Then the Higgs bundle S is H-ample.

By the proof of Theorem 5.2.1, applying Proposition 3.2.5.b, we have the following corol-

lary.

Corollary 5.2.4. Let X be a smooth complex projective variety such that KX is ample

and GY (X) = 0. Then Ω1
X is ample.

Remark 5.2.5. S, as an ordinary bundle, is neither stable nor ample (cfr. Remark 5.1.8). ♢

On the other hand, we have another proof of Guggenheimer-Yau inequality ([69, Remark

(iii)]).
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Theorem 5.2.6. Let X be a smooth complex projective variety such that KX is ample.

Then GY (X) ≥ 0.

Proof. It is enough to note that GY (X) =

∫
X

∆(S) · c1 (KX)
n−2 and the claim follows

from Theorem 1.3.1. Q.e.d.

Thanks to the previous corollary we can simplify [10, Proposition 4.5].

Theorem 5.2.7. Let X be a smooth complex projective variety such that KX is ample and

GY (X) = 0. Then the Higgs bundle Sβ = S(−βKX) is H-nef for every rational number

β ≤ 1

n+ 1
.

It is enough to mimic the proof of Theorem 5.1.3.

Corollary 5.2.8. Let X be a smooth complex projective variety such that KX is ample

and GY (X) = 0. Then the vector bundle Ωβ = Ω1
X(−βKX) is nef for every rational

number β ≤ 1

n+ 1
. As consequences any projective curve C on X satisfies the inequality

2pa(C)− 2 ≥ 1

n+ 1

∫
C

KX|C where pa(C) is the arithmetic genus of C. In particular X

does not contain neither rational curves nor curves of arithmetic genus 1.

It is enough to mimic the proof of Corollary 5.1.4.

Finally, by [61, Proposition 9.8] we have the following theorem.

Theorem 5.2.9 (cfr. [69, Theorem 4 and Remark (iii)]). Let X be a smooth complex

projective variety such that KX is ample and GY (X) = 0. Then X is uniformized by Bn

(the unit ball of Cn).

Remark 5.2.10. By [70, Example 2.1.2.2], Corollary 5.2.4 can be viewed as a consequence

of previous Theorem. ♢



Appendix A

1-H-nflat Higgs bundles over

smooth complex projective varieties

The contents of this appendix are mainly based on paper [12].

We write this appendix because on one hand 1-H-nflat Higgs bundles satisfy the Conjecture

3. On another hand, the definition of these Higgs bundles involves Hermitian metric on the

underlying vector bundle and connections on the relevant Hermitian vector bundle which

are sensitive to Higgs field.

In this appendix, X is a smooth complex projective variety.

A.1 Definition and main properties

In [12], inspired by the work of De Cataldo [21] for ordinary vector bundles, a notion

of numerical effectiveness for Higgs bundles was given in terms of bundle metrics. If

E = (E,φ) is a Higgs bundle, and h is a Hermitian metric on E, one defines the Hitchin-

Simpson connection of the pair (E, h) as

D(h,φ) = Dh + φ+ φ

where Dh is the Chern connection of the Hermitian bundle (E, h), and φ is the metric

adjoint of φ defined as

h(s, φ(t)) = h (φ(s), t)

for all sections s, t of E. The curvature R(h,φ) of the Hitchin-Simpson connection defines a

bilinear form on TX ⊗ E, where TX is the tangent bundle to X, by letting

R̃(h,φ)(u⊗ s, v ⊗ t) =
i

2π

〈
h
(
R(1,1)

(h,φ)(s), t
)
, u⊗ v

〉
.
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where R(1,1)
(h,φ) is the (1, 1)-part of R(h,φ), and ⟨ , ⟩ is the scalar product given by the Kähler

form associated with the given polarization of X.

Definition A.1.1. A Higgs bundle E = (E,φ) over X is said to be

a) 1-H-nef if for every ξ > 0 there exists a Hermitian metric hξ on E such that the bilinear

form

R̃(hξ,φ) + ξω ⊗ hξ

is semipositive definite on all sections of TX ⊗ E that, at every point x in their do-

main, define a rank one tensor in (TX)x ⊗ Ex (here ω is the Kähler form given by the

polarization of X);

b) 1-H-nflat if both E and E∨ are 1-H-nef.

c) Hermitian flat if there exists a Hermitian metric on E such that the curvature R(h,φ)

of the Hitchin-Simpson connection of (E, h) vanishes.

1-H-nef Higgs bundles satisfy properties analogous to those of H-nef Higgs bundles. These

properties have been proved in [12]; here we list some of them for completeness.

Lemma A.1.2. Let E be a 1-H-nef Higgs bundle over X. The following statements hold.

a) Let f : Y → X be a morphism of smooth complex projective varieties. Then f ∗E is

1-H-nef ([12, Proposition 3.3]).

b) Every quotient Higgs bundle of E is 1-H-nef ([12, Proposition 3.7]).

c) Tensor products, exterior and symmetric powers of 1-H-nef Higgs bundles are 1-H-nef

([12, Propositions 3.4 and 3.5]).

d) An extension of 1-H-nef Higgs bundles is 1-H-nef ([12, Proposition 3.9]).

e) E is H-nef ([12, Proposition 4.3]).

Remark A.1.3. Regarding the last statement, the opposite implication is known to hold

for Higgs line bundles ([12, Remark 3.2.(ii)]), and for Higgs bundles over smooth projective

curves ([12, Lemma 4.5]).

The best of our knowledge, it is unknown whether it holds in general, even if one sets to

zero the Higgs field (compare [21, Section 3.1]). ♢
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A.2 H-nflat vs. 1-H-nflat Higgs bundles

1-H-nflat Higgs bundles satisfy other properties which have been proved in [12, 9].

Lemma A.2.1. Let E be a 1-H-nflat Higgs bundle over X. The following statements hold.

a) E is semistable ([12, Theorem 3.11]).

b) The 1-H-nflatness of E is equivalent to the existence of a filtration in Higgs subbundles

whose quotients are locally free, Hermitian flat Higgs bundles. As a consequence, all

Chern classes of E vanish. ([12, Theorem 3.16])

In other words, the last statement proves that Conjecture 3 holds for 1-H-nflat Higgs

bundles, in the smooth complex projective framework. Actually, using Theorem 4.3.5, we

have proved the following theorem.

Theorem A.2.2 ([9, Theorem 5.2]). The following conditions are equivalent.

a) Every H-nflat Higgs bundle over X is 1-H-nflat.

b) Every H-nflat Higgs bundles over X has vanishing Chern classes.

Remark A.2.3 (cfr. [9, Remark 5.3]). If we set the Higgs field to zero in Theorem A.2.2,

i.e. if we apply the Theorem to ordinary vector bundles, we obtain that the notions of

1-numerical flatness and numerical flatness coincide. ♢
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Ringraziamenti

Ed eccomi qui, a scrivere per la terza volta dei sentiti ringraziamenti alle persone che mi

sono state vicine lungo il cammino della vita da dottorando, e non solo in questa parte

della mia vita.

Inizio a ringraziare mia madre Rosaria e mio padre Antonio, che mi hanno sempre sostenuto

e supportato, e forse anche sopportato come figlio. Ringrazio mia sorella Antonietta e mio

fratello Gianluca con cui io sono cresciuto nel calore e nell’affetto della nostra casa. E ivi

voglio ricordare i miei due nipoti (che valgono per tre): Antonio e Vittorio Emanuele, i

quali tutto vogliono da me, tranne che ricevere insegnamenti di matematica1.

Ringrazio la mia famiglia, gli zii e le zie, i cugini e le cugine, ricordando nonna Antonietta

G., zio Gaetano C. e il cugino Giovanni R.

La nonna ha sempre detto che lo studio è importante, senza di esso non si va da nessuna

parte, non si arriva manco fuori il vico di casa; e ha sempre avuto ragione.

Lo zio è sempre stato una persona umile, disponibile e, ahimé, purtroppo ho imparato

troppo poco da lui.

Giovanni ha combattuto sino alla fine la sua battaglia, e c’ha insegnato che non bisogna

mollare mai nella vita!

Per concludere i ringraziamenti familiari, non posso non ringraziare in maniera speciale zia

Rosa, la quale ha corretto le prime bozze di quello che considero il mio primo articolo ([9]).

Come persona cristiana omosessuale, ringrazio di vero cuore p. John Dardis S.J., assistente

generale della Compagnia di Gesù, che non m’ha mai giudicato; che durante gli ultimi sette

anni della mia vita mi ha accompagnato, senza mai ostacolarmi nel mio percorso di vita o
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proiettiva di base.

Per concludere, ringrazio sentitamente Ugo perché un giorno di tanti anni fa mi urlò giu-
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[58] V. Peragine, Semistable Higgs bundles on elliptic surfaces Ph.D. Thesis, SISSA, 2020.

[59] F. Polizzi, X. Roulleau - Pluri-cotangent maps of surfaces of general type, arXiv:

2212.02412 [math.AG]. To appear in Annali della Scuola Normale Superiore di Pisa,

Classe di Scienze.

[60] S. S. Shatz - The decomposition and specialization of algebraic families of vector bun-

dles, Compositio Math. 35 (1977) 163–187.

[61] C. T. Simpson - Constructing variations of Hodge structure using Yang-Mills theory

and applications to uniformization, J. Am. Math. Soc. 1 (1988) 867–918.

[62] C. T. Simpson - Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math.

75 (1992) 5–95.

[63] C. T. Simpson - Moduli of representations of the fundamental group of a smooth

projective variety I, Inst. Hautes Études Sci. Publ. Math. 79 (1994) 47–129.

[64] F. Takemoto - Stable vector bundles on algebraic surfaces, Nagoya Math. J. 47 (1972)

29–48.

[65] H. Tsuji - Stability of the tangent bundles of minimal algebraic varieties, Topology 27

(1988) 429–442.

[66] R. D. Vakil - Foundations of Algebraic Geometry. Stanford University, July 31st 2023

https://math.stanford.edu/~vakil/216blog/FOAGjul3123public.pdf.

[67] A. Vistoli - Notes on Grothendieck topologies, fibered categories and descent theory.

Scuola Normale Superiore, 2008 http://homepage.sns.it/vistoli/descent.pdf.

[68] C. A. Weibel (1994) An Introduction to Homological Algebra, Cambridge University

Press.

arXiv:2212.02412
arXiv:2212.02412
https://math.stanford.edu/~vakil/216blog/FOAGjul3123public.pdf
http://homepage.sns.it/vistoli/descent.pdf


78 Bibliography

[69] S.-T. Yau - Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat.

Acad. Sci. 74 (1977) 1798–1799.
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